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Abstract 

Typically, the development of software system starts with a goal. The goal is 

implemented by following a methodology consisting of phases. Initially, the goal is 

formulated as functional requirements when stakeholders of the software system meet and 

discuss what the software system should do in order fulfill satisfy needs. The functional 

software requirement document is then converted to software design document either 

through conceptual model, software code or both. After, the system is tested rigorously 

before it is implemented. Since the development of a software system consists of phases 

with each phase depending on prior stages, an inconsistency made in the initial phase of 

development such as in the requirement specification phase, may be propagated into other 

phases. A methodology for detecting conflict in functional software requirements 

through level of Potential Structural Inconsistency (PSI) is presented in this research. This 

is accomplished, by representing functional software requirements stated in natural 

language as structural model (i.e. conceptual model) and similarities between these 

models are obtained as a level of potential structural inconsistency. Sample functional 

software requirements are analyzed using this methodology and the inconsistency is 

compared with a particular type of conflict. In conclusion, various inferences are made 

based on the new methodology and recommendations are given for further improvements 

and future research. 
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Chapter 1 Introduction 

Organizations, business units, governments and institutions use multiple software systems to 

support their operations. For example, the National Aerospace Space Agency (NASA) spent 

billions of dollars developing high quality software systems to support space exploration. 

Some of these systems contributed to major losses in their space programs. An unmanned 

Mars Polar Lander crashed in 1999. The crash was attributed to a software bug (Blackburn 

2002). Similarly, NASA's counterpart in Europe, the European Space Agency suffered a loss 

of over $7 billion when the Ariane 5 rocket exploded during launch (Gleick 1996). The 

explosion was blamed on an attempt by Ariane's software to convert a 64-bit floating-point 

value into a 16-bit integer value without adequate checks for overflow. 

Failures such as these can be traced to multiple possible sources. One of those sources is the 

set of software requirements used during the software development process. Undetected 

inconsistencies between requirements could result in the implementation of inconsistencies in 

software system modules that may lead to embedded errors in the final assembled software 

system. 

Most organizations use a structured process for developing software in order to mitigate risks 

and minimize errors. A common example of this structured process is the Software 

Development Life Cycle (SDLC). The phases of the SDLC include specification of 

requirements, design of a software system based on the requirements, implementation of the 

design (i.e. software coding), testing, deployment, and system maintenance. Early detection 

of inconsistencies in the SDLC can help prevent the propagation of errors through the 
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development process. For example, Nelson et al (1999) found that software developers 

typically design systems based on requirements that have embedded errors. Apart from not 

being able to satisfy user needs, errors in requirements are costly, increase development time 

and cause maintenance problems. Nelson stated that 

"A software error costing a mere $1 when caught early in the life cycle, costs $5 to 

correct at midpoint and $100 to correct later in the life cycle". 

From a cost perspective, there is certainly a strong case for early error detection in order to 

reduce overall SDLC related costs. 

The requirements phase consists of a set of iterative activities including elicitation, 

specification, analysis, negotiation, revision and documentation (Lamsweerde 1998). 

Elicitation is a data collection activity in which stakeholders (i.e., those who have a stake in 

the software system) define the elements of the problem and the associated requirements. 

The requirements are specified in natural language and analyzed. If problems arise, such as, 

ambiguity or inconsistency, the requirements are negotiated among the stakeholders and 

revised. After multiple iterations, the requirements are finally documented. The 

requirements phase involves extensive human interactions that can result in numerous 

inconsistencies. The sheer volume of information and lack of supporting analytical tools 

makes it difficult to detect inconsistencies. 

Functional requirements specify the desired properties in the application domain that are 

satisfied using the software system. Inconsistencies created by the stakeholders, will 
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propagate into other phases. Therefore, inconsistencies occurring in the requirements phase 

(even if detected later) can be expensive to resolve. Methods for detecting inconsistencies in 

the requirements phase can help prevent major problems in downstream phases. 

Stakeholders have varying concepts of what constitutes a software requirement. Terms such 

as requirements, specification and requirements specifications are often used loosely and 

interchangeably. The IEEE (IEEE 1998) definition of software and system requirements 

specifications defines a System Requirements Specification (SyRS) as 

"A description of what the system's customers expect it to do for them, the system's expected 

environment, the system's usage profile, its performance parameters, and its expected quality 

and effectiveness. " 

A Software Requirements Specification (SRS) (IEEE 1998) is defined as 

"A specification for a particular software product, program, or set of programs that performs 

certain functions in a specific environment. " 

Based on the preceding definitions, a requirement in this research context will be defined as 

"A description, represented in some form, which captures the needs of one or more 

customers for a software system." 

An inconsistency occurs when there is a disagreement or conflict between two or more 

functional requirement statements. 
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1.1 Problem Description 

Stakeholders elicit functional software requirements for a requirements document. Multiple 

stakeholders could specify one or more statements for inclusion in the requirements 

document. The stakeholders may meet from time to time, reviewing and revising these 

requirements. For a requirements phase, it is reasonable to assume that there exists an ideal 

set of requirements, R*, that would completely satisfy the users' needs. As stakeholders 

progress through the requirements phase, the set of requirements can be defined as R. The 

expectation is that R over some period of time will converge to R*. 

To an observer, R appears to be stochastic in nature as its cardinality and accuracy increase 

and decrease over time. R may contain inconsistencies which cause it to deviate from R*. 

In this study, we focus on examining R at an instant in time for some unknown R*. Suppose, 

we form a subset of two requirements statements from R. Individually, the statements may 

be correct. However, when examined together they may be in conflict. The difficulty lies in 

detecting the conflict. 

Requirements are usually specified in natural language. These natural language statements 

can be understood by a wider audience but can be ambiguous and unstructured as well. 

Therefore, other types of representations have been used. There are three basic types of 

representations, namely, informal, formal, and semi-formal models (Nuseibeh et al 2000). 

Natural language is an informal model. It is often classified as informal because almost 

anyone could use natural language to specify needs. 
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The common use of natural language was noted by Berry (03/25/04) who observed that 

"Virtually every initial conception for a system is written in natural language. " 

In order to reason about inconsistencies in natural language, researchers have introduced 

formal models for detecting logical inconsistencies in natural language requirements. Formal 

models include formal requirements specification languages such as Software Cost 

Reduction (SCR) (Chechik 2001), predicate logic (Zowghi 2001), quasi-logic (Hunter 1995) 

and others. 

The motivation for formal models is that they are well defined and provide a structure for 

reasoning about requirements. For example, if predicate logic statements can be created 

from a requirement expressed in natural language, then the requirement can be automatically 

assessed for logical inconsistencies using a theorem prover. However, the reasoning 

framework provided by the theorem prover is based solely on a classical logic model, which 

is an abstraction of the actual requirement. A formal model of natural language requirements 

is by no means an all-expressive and encompassing model since it is an abstraction of a 

requirement and some fidelity is lost. A theorem prover combined with predicate logic uses 

a Boolean value to detect the presence of an inconsistency. This approach is unable to assess 

the degree or significance of an inconsistency. 

The third form of representing requirements is a semi-formal model. Our study is concerned 

with this form of representation that essentially captures a graph view of the requirements. 

These views describe structural, behavioral, or temporal properties of a requirement. 
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Practitioners have used semi-formal models such as, Entity Relationship (ER) model, Unified 

Modeling Language (UML) Class Diagram, UML Sequence Diagram, Data Flow Diagrams 

(DFD), Jackson Frame Diagrams, Flow charts, State Transition Diagram and others to 

describe problem domains. A number of researchers have studied the issue of inconsistency 

within a semi-formal model (Robinson 1999; Spanoudakis 1999), but did not consider using 

structural models to detect potential inconsistencies in natural language requirements. This 

may be due to the lack of a suitable structure for reasoning about inconsistencies as in formal 

models. 

1.2 Motivation 

Prior to this study, most of the research on detecting inconsistencies has focused primarily on 

logical inconsistencies (Hunter 1995; Zowghi 2001). These methods are Boolean 

assessments that indicate the existence of a logical inconsistency. In some cases, there may 

be uncertainty as to the existence of an inconsistency because the logical method only 

represents a logical view of inconsistency. The author believes that inconsistency has many 

forms and representations. Therefore, other views (e.g., structural representation of 

functional software requirements) should be investigated. A structural view emphasizes the 

relationships between requirement elements and provides a different perspective for the 

assessment of inconsistencies. Previous researchers have studied the existence of 

inconsistencies, but further investigations are warranted to assess the degree of 

inconsistencies and their severity. 
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1.3 Research Roadmap 

Chapter 2 discusses the previous research and the relevance to the current research to the 

detection of inconsistencies in requirements. Chapter 3 states the research objectives and 

formulates the problem in terms of the problem elements and structure. Chapter 4 is the 

terminology for the research. Symbols and definitions are given in this section. Chapter 5, 

states the methodology based on formalized theories. In conclusion, Chapter 6 gives 

background information on the case studies to be investigated. Chapter 7 gives the results of 

analyzing software requirements from various case studies. In Chapter 8, a discussion of the 

research findings is presented along with conclusions about detecting conflict in functional 

software requirements via the level of potential structural inconsistency. 
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Chapter 2 Literature Review 

Hausmann (2002) used a semi-formal model to detect conflicts in functional requirements. A 

use-case diagram was used to analyze requirement specifications from different stakeholders. 

Use-cases are part of the Unified Modeling Language framework (UML) ["Unified Modeling 

Language"].The use-case approach captures functional requirements through symbols 

consisting of objects and actions. Hausmann refers to the process of gathering and structuring 

information for the development of complex software system as often resulting in a set of 

overlapping and partly conflicting requirements models. Hausmann recommends that the 

requirements should be integrated into a consistent model. Conflict was related to the 

problem of potential consistency inconsistency in functional requirements. In a case study, 

conflicts were detected in a pair-wise manner based on the use-case diagram and set analysis. 

This research indicates that semi-formal models show promise for detecting conflicts in 

software requirements specification. 

Lamsweerde (1998) described the starting point of requirements elicitation as a set of goals 

specified in a high-level language. He introduced a goal specification language (KAOS) 

which contained limited constructs in the form of an ontology. These constructs included 

goals, agents, operations and objects. Once the goals were specified in KAOS a number of 

heuristic methods were used to detect and resolve inconsistencies in logic, structure, and 

designations. This ontology demonstrated the importance of classifying requirements based 

on some set of defined objects (similar to semi-formal models) before detecting 

inconsistency. This approach is similar to other researchers Aircraft European Contractors 
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Manufacturers Association (AECMA) who simplified the problems of ambiguity and 

complexity of natural language requirements by creating a small manageable subset of 

language for requirements. 

Robinson et al (1999) proposed a requirements ontology called Conflict-Oriented 

Requirements Analysis (CORA) for stakeholder conflict resolution through requirements 

restructuring. The study identifies three steps in restructuring stakeholder requirements 

through CORA, namely, conflict identification, resolution generation and resolution 

selection. CORA is in the form of a semi-formal model based on the UML class diagram. 

This approach reinforces the notion of reasoning about inconsistency in requirements through 

semi-formal models. It is important to note that semi-formal models are often used to 

represent an ontology. 

The ontology of CORA serves as a structural template that models stakeholder requirements. 

The models show the interaction of classes and relationships. The goal of this approach is to 

resolve stakeholder conflicts. A structural template for requirements suggests that R* and 

R(t) have some inherent structure and that resolutions are based on some modification of the 

structure or its contents. 

A requirement conflict is defined as a structural interaction in CORA. An interesting part of 

Robinson's research is that the structural conflict analysis is composed of a recursive pair-

wise comparison of the requirements in CORA for structural differences (i.e. similar to 

Hausmann's observations). The structural differences form a tree of structural differences. 

Based on CORA, some of these structural differences form a part of a requirement 
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interaction that define a structural conflict. This provides strong support for using a 

methodology that is iterative, compares pairs of structures and collects information about 

structural differences. The author suggests that the concept of a structural difference lends 

itself to the methodology of gathering some form of structural metrics on functional software 

requirements in order to determine the occurrence of a conflict. 

Spanoudakis et al (1997; 1999) studied potential inconsistencies based on the detection of 

ontological overlaps in object-oriented specifications (i.e., semi-formal models) and metric 

functions related to semantic and similarity analysis. A reconciliation method was used for 

detecting ontological overlaps through the analysis of similarities between object-oriented 

viewpoints. These viewpoints represent the partial specifications of the overall requirement 

for object-oriented specifications. The method helped to establish a common understanding 

of the potential for inconsistency between specification owners through assessment and 

verification of the detected ontological overlaps. Their assumption is that the existence of an 

overlap in requirement specifications is a precondition for detecting inconsistencies. The 

method uses a similarity analysis that measures the distances between specifications based on 

three metrics, namely, classification, generalization and attribution. The distances represent 

differences in properties of classes, semantic differences and semantic homogeneity. It is 

important to note that classes are often part of an ontology and therefore, it is in agreement 

with Robinson's approach. The result of the similarity analysis is the overall distance 

measures, weighted graph and lists showing properties of classes weighted by importance. As 

a result, specification owners can assess the result and vary parameters in order to discover 

new overlaps. An example of the method is provided in detecting overlaps between two 
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object-oriented specifications of library borrowers, items and their relations. Most of the 

similarities are referred to as structural but show semantic overlaps. For example, a borrower 

can be semantically mapped onto Student. This research provides an excellent foundation for 

detecting potential inconsistency in semi-formal model though it does not address the 

problem of natural language requirements related to structural representations such as the ER 

model. 

Simple natural language requirements in Italian were transformed into graphical 

representations of certain classes of information (Ambriola 1997). The interpretation of the 

natural language requirement was performed using a domain dictionary and a set of fuzzy-

logic rules. The graphical representations were data flow diagrams and the ER model 

(Thalheim 2000). This methodology provides a basis for generating ER models from natural 

language requirements. However, the method does not check for inconsistency in the ER 

models. In similar research, Tjoa (1993) presented a tool that can be used to transform 

requirement specifications expressed in natural language into a conceptual model. The tool is 

called the Data Model Generator (DMG). The DMG is based on the assumption that 

syntactic structures of natural language requirement specifications can be translated into a 

conceptual model, Extended Entity Relationship Model (EER). Their approach was a set of 

rules and heuristics for extracting syntactic information and capturing static aspects such as 

entities, entity types, attributes and relationship types. It also showed the degree and 

connectivity between (mandatory, optional) of relationship types (such as, mandatory or 

optional). The research is significant because it addressed the issue of creating an ER model 

from natural language requirements. They noted that one advantage of the system is the 
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automated extraction of models when a user is inundated with a large amount of textual 

requirements. One limitation though is that Ambriola (1997) and Tjoa (1993) did not address 

the detection of inconsistencies in the semi-formal models. 

In related work, Palmer (1992) proposed an integrated environment for requirements 

engineering. It supports a broad range of requirements engineering activities with the 

inclusion of requirements elicitation, classification, analysis, traceability and design. Of 

interest are the Lexscan and Knowledge-Based Requirements System (KBRS) modules. The 

Lexscan is an automated tool that can be used to analyze natural language requirements 

based on syntax. It classifies natural language requirements through indexing and clustering 

methods as opposed to the reconciliation method, which uses a set-based method. The 

indexing and clustering methods are used to distinguish between similar requirements. 

Classified requirements are passed to the KBRS for detecting a number of problems such as 

conflict, inconsistencies, incompleteness and others. The KBRS is a knowledge-based tool. 

The KBRS detects conflict based on captured knowledge, which may be subjective. This 

research showed the importance of clustering algorithms and suggests that they can be used 

to detect inconsistencies in clusters generated from natural language requirements. It also 

shows that similarity can be used to analyze requirements based on some form of 

classification (e.g., clusters). 

Hunter et al (1995) adapted classical logic (Gries 1993) to create a "quasi-classical logic" 

(QC logic). This was used to represent partial specifications as a "Viewpoints framework" 

and detect logical inconsistency. Theorem proving was proposed as a framework for 
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reasoning about logical inconsistencies represented in QC logic. Using a case study of an 

order processing system for a wine warehouse, the authors manually translated the 

requirements document into QC logic. The authors reasoned about certain scenarios using 

the QC logic and made inconsistency inferences that were related back to the requirements 

document. Among some of the inferences was that there was some inconsistency in issuing 

warehouse request was probably caused by the conflicting rules laid down by the Logistics 

Manager and the Chief Wine Taster. The inference was made in a rule that states that "If 

there is an inconsistency in the specification data, the likely source of the inconsistency is a 

conflict between two development participants". This research is important because it shows 

how classical logic from the field of mathematics can be used in the detection of logical 

inconsistencies caused by conflicts in the field of requirements engineering. 

Zowghi (2001) investigated the detection of logical inconsistency in natural language 

requirements using a similar approach as Hunter (1995). The process of detecting logical 

inconsistencies consists of parsing natural language requirements using a parser named CICO 

(Gervasi 2000) that produces a parse tree. This tree is a hierarchical tree structure (consisting 

of nodes and branches) that shows the relationship between the words and their parts of 

speech. The resulting parse tree is translated into predicate logic (i.e., a formal model) and 

submitted to a system called Computer-Assisted Requirements Evolution Toolset (CARET). 

CARET takes the predicate logic as an input and checks for logical inconsistency using 

different scenarios and a theorem prover. This method is significant because it utilizes an 

automated theorem-proving framework for detecting logical inconsistencies through the 

translation of natural language requirements. They suggested an expressive form of logic that 
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could capture complex requirements as an extension to their work, indicating that additional 

views may be needed that are not supported by a logical model. 

Genero (2003; 2002; 2000) investigated the application of metrics to ER models. Genero 

(2003) used metrics in defining and validating a conceptual model. The ER model was used 

as a conceptual model. In an empirical study, participants detected similarities between ER 

models in a certain amount of time. This was used as an understandability attribute of 

quality. In order to measure the modifiability, the participants evaluated two ER models to 

determine if they had the same conceptual meaning. The metrics used in correlating the 

response times include the number of entities, number of binary relationships and others. 

These types of metrics can be considered as base metrics. The results show high correlation 

between the metrics and selected quality attributes. This research is important because it 

provides a probable set of base metrics that could be used to analyze an ER model (Jones 

2000) and a correlation method for validating metrics. 

A metrics system built on similar base metrics was used to detect the level of quality in an 

Extended Entity Relationship (EER) (Cherfi 2002). Metrics were derived for assessing the 

quality of EER Model or UML class diagrams. Using base metrics, composite metrics were 

derived to measure attributes such as, legibility, expressiveness, and simplicity. For example, 

measuring legibility was based on the number of inheritance links and the number of line-

crossings (i.e., base metrics) in a model. One limitation of these metrics is that, they are used 

to measure quality (Wilson 1996) as opposed to inconsistency and rely on specialized 

relationships through the concept of inheritance. 
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Lorenz (1973), a Nobel laureate discussed concepts of evolution in relation to similarity of 

forms. He notes that as evolution occurs, two forms that exist in life may take similar paths in 

parallel for the purposes of adapting to their environment. This may be related to the concept 

of conflict, if the two forms existing in life are so similar they compete for the same 

resources. Lorenz states, "The improbability of coincidental similarity is proportional to the 

number of independent traits of similarity and is, for n such characters, equal to 2 n'u\ For 

example, Lorenz mentions that an airplane, torpedo and shark amongst other forms bear a 

notable resemblance because of they need to reduce friction in order to function in their 

environment. A similar line of reasoning can be extended to software requirements 

specifications, if two functional requirement statement existing a document are competing for 

the same section of code to be implemented, this may lead to conflict. The concept of 

similarity can be viewed as an analogy that can be used to reason about inconsistencies in 

functional software requirements. 

Tverksy's (1977) similarity model consists of a feature-based set for similarity measure. It is 

predicated on the assumption that a similarity measure between two or more objects is 

proportional to the number of common features. The common and distinct features are 

modeled as set operations on the features of the objects in comparison. Tver sky gives 

numerous examples to demonstrate the measure. In one example, the letter "E" is more 

similar to "F" then "I" based on the more common features. In the same way, the letter "I" is 

more similar to "F" than "E" based on distinct features. Tver sky suggests that although 

people assume that classifications are determined by similarity, "The similarity of objects is 

modified by the manner in which they are classified; it serves as a basis of classification of 
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objects, but it is also influenced by the adopted classification." This statement implies that 

though we proposed the use of the similarity measure to classifying objects, there is an 

unconscious effort when a specific classification method is adopted which will in turn 

influence the measure of similarity. It is important to state at this juncture, that there are other 

possible measures of similarity, but Tversky's measure was used for this study because of its 

transferability to the requirements context and its basis in set theory based representation. 
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Chapter 3 Research Objectives 

Tversky's similarity measure is central to this research because it was used by Rodriguez et 

al (2003) to determine the similarity between ontologies using entity classes. For example, 

two different ontological representations of the word "stadium" are compared with one 

another based on their respective hierarchical set definitions. The entity class for "stadium" 

represented an ontology containing elements such as possible names, descriptions, super 

class definitions, sub class definitions, parts (i.e. objects), functions and attributes. This 

research provides some indication that Tversky's similarity measure could be useful in 

exploring structural overlap between pairs of ER Models (which are similar to entity classes). 

A limited ontology for ER Models would consist of cardinalities, entities, relationships and 

attributes. 

Support for pairwise comparison of requirements is based on the approaches described by 

Hausmann (2002) and Robinson (1999) where requirements or structures were compared 

pairwise. This approach simplifies the analysis by considering conflicts between each pair of 

requirements. The role of overlap is important for detecting conflicts as seen in Nuseibeh 

(2001) and Spanoudakis et al (1997; 1999) where the condition for the existence of an 

inconsistency depends on an overlap. In this research, we consider structural overlap between 

a pair of requirements. Hunter et al (1995) states that "If there is an inconsistency in the 

specification data, the likely source of the inconsistency is a conflict between two 

development participants." This statement implies that based on structural overlap, a possible 

conflict can be detected via the measure of potential structural inconsistency between a pair 
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of functional software requirements. 

The need to transform natural language statements into a form suitable for analysis has been 

recognized by Hunter (1995) and Zowghi (2001). They transformed functional software 

requirements into logical statements and then analyzed the statements via a theorem prover to 

identify logical inconsistencies. This suggests that the type of inconsistency detected is 

closely related to the form of representation. Similarly, if we transform requirements into a 

structural form, then one would expect to see possible "structural inconsistencies." A 

structure is defined by a set of related elements. 

A structural inconsistency can be defined as a condition in which "one or more elements of 

two structures disagree with each other " while a conflict can be defined as "a state in which 

two or more requirements statements cannot co-exist together.'''' A disagreement may exist if 

there is an overlap between two structures. This may occur because the two structures share 

elements that should not appear in both sets or the relationship between elements is defined 

differently in the two structures. Overlap (i.e., similarity) between two structures can be 

defined as the set of common elements found in both structures. Previous research has shown 

that the existence of an overlap is a precondition for detecting inconsistency in functional 

software requirements (Nuseibeh 2001; Spanoudakis 1997, 1999). If we use similarity (i.e., 

the relatedness between structures taking into account common and unique elements to both 

structures) as a measure of overlap between structures, then the amount of structural overlap 

for a set of functional software requirements can be determined. 
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3.1 Primary Research Question 

When does structural overlap indicate that a conflict is likely for a pair of functional software 

requirement statements? 

3.2 Research Proposition 

When a high numeric value of potential structural inconsistency is observed for a pair of 

functional software requirements, then a conflict is likely. 

3.3 Inferences 

When a potential structural inconsistency value is high for a pair of requirements, this 

indicates that a conflict is likely and there is also a high degree of structural overlap 

associated with some redundancy. The numeric value for a pair of requirements is assumed 

to be high irrespective of whether the value is above or under a threshold value. If the pair of 

requirements is revised in such a way that the potential structural inconsistency value is 

significantly reduced, then the conflict should be resolved. Possible revisions would include 

elimination of statements, adding elements, or removing elements. 

3.4 Verify with test cases 

In these test cases, a set of requirement statements R with known conflicts are transformed 

into corresponding structural representations. Numeric values of structural overlaps were 

computed and the level of potential structural inconsistency for R was determined. If a pair 



www.manaraa.com

20 

of requirement statements having a known conflict exhibits a high level of potential 

structural inconsistency, then the embedded conflict will have been successfully predicted 

and the proposition would have some support. If known conflicts exhibit low values for the 

metric, then potential structural inconsistency would be a poor indicator of conflicts. 

3.4.1 Conditions 

Multiple sets of requirement statements were used from different case studies used in 

previous research (Flowers 1996; Lewerentz et al 1995; Neufville 1994). 

3.4.2 Expected Results 

The author expects that a high level of potential structural inconsistency indicates conflict to 

some acceptable degree and that different case studies can be used to show this. 
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Chapter 4 Terminology 

4.1 Notation 

The following notations are used in subsequent sections. 

R : a set of requirement statements in a natural language 

R : an abstraction of R in a controlled language 

r: : requirement statement i 

II : Entity Relationship Model set 

nt : the entity relationship model for requirement i 

s : an entity in nt 

a : an attribute for an entity 

c : the value in terms of number of entity instances in a relationship 

co: a relationship between two entities 

v. cardinality for an entity in a relationship 

^{71^71 j ) : the potential structural inconsistency for nt and rc] 



www.manaraa.com

22 

Q>k(tt,,^j): set operation on /r, and nj 

4.2 Definitions 

4.2.1 Attribute 

An attribute is the property that describes of gives more information about an Entity. An 

attribute set for Entity type i  is represented by A/= {an, <%, •••> <%}• 

4.2.2 Cardinality 

The cardinality indicates the number of entities participating in a relationship. It is a three-

tuple, Vk = (c, £•„ ûj) consisting of a value (in terms of number of instances), an entity, and 

one relationship. 

4.2.3 Modified Controlled Language Lexicon 

The controlled language, ACEMA CL (AECMA 2004), was modified to create a lexicon 

having only one possible part of speech for each word. This was done to simplify the 

transformation process. Let R'(0 be a representation of R(f) based on the modified CL 

lexicon. 

4.2.4 Entity Relationship Model for a Requirement 

The entity relationship model is the structure being used in this research. It is a conceptual 

model described by entities, relationships, attributes and cardinalities.. An ER model for 

requirement statement i ,  is defined as a three-tuple, 7r, (E,Q,N). The entity set E = {e\,  Sz, £3, 
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...,£„}, represents objects in the system. For each entity e„ there is a set A,—{an, an, <2, 3 ,  . . . ,  

(Zip} of attributes that describe the entity. Relationships between entities in E are defined by 

Q - {coi, (o 2, (o 3, ..., a>m}, a pairwise set of relationships where, m < 
fn \  

<2y 
. The cardinality 

set N = {vi, v 2, v 3 ,  . . . ,  v 2m}, defines the number of instances for each entity in a 

relationship. 

4.2.5 Entity 

An entity £,, is an object that is involved in some task or action. The entity set E = {s\, £3, 

represents all entities in a statement 

4.2.6 Functional Software Requirements 

A collection of statements in natural language that specify what the software must do in order 

to satisfy customer requirements is given by 

R = {r,, r2, r3,..., r„}. 

4.2.7 Part Of Speech (POS) 

The complete part of speech list can be found in the Appendix A. The POS reflects the role 

of a word in the statement. The basic types are article, noun and verb (i.e. ART, N and V 

respectively). Appendix A shows the Penn Treebank tag set used in this research. When a 

statement is parsed by the Stanford parser, the tags of each word in the statement are actually 

from the Penn Treebank tag set. 
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4.2.8 Parse Tree 

A parse tree describes the structural relationship for the POS set in a requirement statement. 

The tree is a hierarchical display of nodes consisting of parent and leaf nodes. The Stanford 

parser produces the parse tree from a statement. 

4.2.9 Parent Node 

A parent node is a node in the parse tree that is either a statement or a phrase. A phrase may 

either contain other parent nodes or leaf nodes. A sample of parent nodes are given in Table 

1. A detailed description can be found in Appendix A. 

Table 1 Parse Tree Parent Nodes 

Parent Node Designation 
Statement S 
Noun phrase NP 
Verb phrase VP 
Prepositional phrase PP 
Adjectival phrase ADJP 
Adverbial phrase AD VP 

4.2.10 Leaf Node 

Leaf nodes are nodes at the lowest level in the parse tree. They have no child nodes. A leaf 

node represents a POS for each one word in the requirement statement. 

4.2.11 Phrases 

When a statement is incomplete it is a phrase. Based on the POS, we can have different types 
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of phrases as shown in Table 1. 

4.2.12 Potential Structural Inconsistency 

An inconsistency is defined as "If a reason, idea, opinion, etc. is inconsistent, different parts 

of it do not agree or it does not agree with something else''' [Cambridge online dictionary]. 

We define a potential structural inconsistency between /r, and n} as Y (%-,,%%) . This 

represents the possibility that elements of structures do not agree with each other 

4.2.13 Relationship 

A relationship cok, is some form of association between two or more entities. The relationship 

set for ni is defined by Q = {cûj, co 2, co 3, ..., co m}. If there are no relationships between 

entities, then this would be a null set. 

4.2.14 Total Elements 

0% (tt, u nJ ) is the set of all elements of type K (e.g., entities, attributes, relationships) 

present in ni and nv. 

4.2.15 Common Elements 

Ok (tt, n jtj ) is the set of all elements of type K (e.g., entities, attributes, relationships) 

common to both Kj and Tt j. 
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Chapter 5 Research Methodology 

5.1 Methodology Overview 

The main components of the research methodology include: 

1. Derivation of the inconsistency metric, vf(^, , jtj ) 

2. Selection of suitable datasets for requirements based on known case studies 

3. Comparison of the results for xv{nt, n} ) and known inconsistencies in the datasets 

4. Comparison with Predicate Logic; provide some lightweight validation for 

inconsistency detected 

Y i s  d e r i v e d  f r o m  R  ( i . e . ,  t h e  s e t  o f  r e q u i r e m e n t s )  b a s e d  o n  T v e r s k y ' s  m e a s u r e  o f  

similarity with normalization. The datasets for the requirement statements are taken from 

four existing software system development case studies. Each dataset is then analyzed and 

the value of ) for each pair of requirements is determined. Based on known 

conflicts in the datasets, a comparison is made between the existence of conflicts 

and . These results are compared with the predicate logic approach used in 

previous research to evaluate the similarities and differences in detecting conflict. 

5.2 Derivation of Y(%r,, k] ) from (r,, ) 

The major steps in finding f J are as follows. 
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1. Manually rewrite each r, as r\ based on the modified CL lexicon (see section 4.2.3). 

Words that do not exist in the CL are replaced by looking for words with similar 

meaning. The meaning of the word within the context of the statement is also taken 

into account when selecting the replacement word. It is possible that a conflict could 

be artificially introduced due to this replacement. 

2. Parse r/ using the Stanford Parser (Klein 2003) to produce a parse tree. 

3. Manually modify the parse tree by checking the POS for each leaf node in the tree 

versus the modified CL lexicon. If the POS does not agree with the lexicon, then the 

POS is replaced with the one in the lexicon and the parse tree structure is modified if 

. necessary. 

4. Transform the modified parse tree into nt, the Entity Relationship Model (ER 

Model) using Chen's rules. 

5. Calculate vp(^r,,^y) from n t  and nr  

5.2.1 Transform r, into r,' 

Natural language is ambiguous because words used in natural language can have different 

meanings in different contexts resulting in multiple possible parts of speech. The parts of 

speech are one component of determining the semantics of a statement. For example, 

consider the word "state" used as follows. 
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1. The man states that the project will take a long time. 

2. The states claim that the project will take a long time. 

In the first statement the word "state" is a verb while in the second statement it functions as a 

noun. Identifying the different parts of speech in each statement is relatively easy for 

someone who knows the language. However, using an algorithm that relies on word sense 

disambiguation rules is a non-trivial problem (Kamsties 2001) beyond the scope of this 

research. 

In order to overcome the problem of ambiguity in natural language, a Controlled Language 

(CL) is used. A CL is a subset of the English language containing a smaller lexicon (i.e., set 

of words). The CL used is the Aircraft European Contractors Manufacturers Association 

(AECMA) Simplified English (SE). AECMA was selected over other CLs (such as, 

Attempto Controlled English ACE, Processable English PENG, and Caterpillar Fundamental 

English (CFE)) because it has been in existence for quite some time and is readily accessible. 

AECMA SE has been used for the specification of aircraft maintenance manuals in order to 

improve the readability for aircraft maintenance workers. In a similar manner, by specifying 

the functional software requirements in a CL, ambiguity in the language is reduced, 

simplifying the process of producing a parse tree. The AECMA SE consists of a limited 

lexicon of 956 words including nouns, verbs, adjectives, and prepositions. Some words in the 

lexicon have more than one possible POS. This lexicon was modified by reducing the 

possible parts of speech for each word to one. This provided a unique POS for each word. 
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Each requirement statement, ri, is rewritten as r' using the modified CL lexicon. 

5.2.2 Parsing r/ using the Stanford Parser 

The Stanford parser was used to produce a parse tree for each r/. Suppose, we have the 

following requirement statement from a simple case of developing a web based system that 

monitors Internet traffic. 

The system monitors the traffic. 

The POS tags from the modified CL lexicon for each word are shown in the Table 2. The 

combination of each word and its POS tag are the leaf nodes for the parse tree. 

Table 2 POS tags for the example 

Word POS tag Meaning 
The DT Determiner 

system N Noun 
monitors V Verb 

the DT Determiner 
traffic N Noun 

If all the words in a statement is tagged then it is verified as being wholly contained in the 

CL. The CL statements help to reduce the possibility of ambiguity. The Stanford parser 

produces a parse tree using the Penn Tree Bank tags none-the-less if the CL parts of speech 

help to ensure consistency. The Stanford parser uses a set of grammar rules that contain 

relationships between the phrases and the POS tag. 
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The final parser output using the Stanford parser is shown in Figure 1. 

The/DT system/N 

monitors/V 

the/DT traffic/N 

Figure 1 : Parser Output 

5.2.3 Modify the Parse Tree Using the Modified CL Lexicon 

The parse tree is based on a different lexicon (i.e., the Penn Tree Bank tagset). Therefore, the 

resulting POS tags in the tree may not be consistent with the modified CL lexicon. The leaf 

nodes in the tree are manually compared with entries in the modified CL lexicon. If they do 

not agree, then the POS tag from the modified CL lexicon is substituted into the tree. In 

some cases, this may change the nature of the parent nodes and then the tree is manually re

structured. 

5.2.4 Transform the modified parse tree into ni 

Chen (1983) studied the relationship between the parts of speech in English sentences and the 

associated ER Model. Following the general guidelines for creating ER Models proposed by 



www.manaraa.com

31 

Chen, the parse tree nodes were transformed into an ER Model, . The following rules 

proposed by Chen were used. 

Rule 1: If the word is a common noun (e.g., "person", "Chair"), then add sk (corresponding 

to the noun) to E if ek does not already exist. 

Rule 2: If the word is a transitive verb (or verb phrase), then add cok (corresponding to the 

verb) to £2. The following example is given by Chen. 

A person may own a car and may belong to a political party. 

The transitive verbs, "own" and "belong to", are relationships between (person, car) and 

(person, party), respectively. 

Rule 3: If the word is an adjective, then add aik (corresponding to the adjective) to A, for 

entity er 

Rule 4: If the word is an adverb, then it is considered to be a modifier of a verb phrase 

corresponds to an attribute of a relationship in an ER Diagram. The author of this research 

assumes that this attribute is part of a verb phrase as such a relationship. 

Rule 5: If a parent node has the form "The X of Y is Z" and if Z is a proper noun (i.e., a 

specific instance of a noun), then treat X as a relationship between Y and Z and add cok 

(corresponding to X) to £2. In this case both Y and Z represent entities. 
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Rule 6: If a parent node has the form "The X of Y is Z" and if Z is not a proper noun, then 

treat X as an attribute of Y. In this case Y, represents an entity (or group of entities) while Z 

represents a value. Chen gives the following statement as an example. 

The color of the desk is blue. 

Rule 7: If a clause is a high-level entities then it is abstracted from a group of interconnected 

low-level entities and relationships. 

Rule 8: A sentence corresponds to one or more entities connected by a relationship, in which 

each entity can be decomposed (recursively) into low-level entities connected by 

relationships. 

Based on the POS tags, the corresponding ER model components are shown in Table 3. 

Table 3 ER Model Components 

POS Tag ER Model Component 
N e 
V co 

ADJ a 
ADV CO 
DT V 

To define the sets associated with nt (i.e., E, A, Q, N), the tree is traversed depth-first, from 

left to right and the components of the ER Model are identified based on the rules. 

The general guidelines for extraction are as follows. 
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Entity Extraction: Traverse the parse tree from left to right until a noun leaf node is 

encountered. The first noun leaf node encountered is "system/N" with the parent node "NP". 

Based on Rule 1 we can add "system" to entity set E. In a similar manner we can add 

"traffic" to the entity set E. In the general case, we can traverse the parse tree from left to 

right until we find "NP" parent nodes then we look for "N" child nodes , add corresponding 

words to the entity set until we reach the end of the statement. 

Relationship Extraction: Traverse the parse tree from left to right until a verb or adverb is 

encountered. The first verb encountered is "monitors/V" with a parent node "VP". Based on 

Rule 1, we can add "monitors" to the relationship set but in order to do that we require two 

entities. The two entities can be obtained by finding the noun leaf nodes of neighboring NP 

parent nodes to VP. In this example, "system" and "traffic" are selected and then the 

relationship is added to the relationship set Q. In the general case, we can traverse the parse 

tree from left to right until we find "VP" parent nodes then we look for "V" and "RB" (i.e. 

from the Penn Tree Bank Tagset) child nodes, add corresponding words to the relationship 

set until we reach the end of the statement. 

Attribute Extraction: Traverse the parse tree from left to right and search for neighboring 

leaf nodes that qualify noun leafs (i.e. providing more information about noun leafs). The 

search will typical stop for a noun leaf node once a relationship or the end of the statement is 

encountered. 

Cardinality Extraction: Find the noun leaf nodes and look for another leaf node having the 

same parent node NP and a part of a "Determiner" as its POS. This step was omitted in the 
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research because the use of cardinality introduced a greater complexity in the research and 

other metric concerns as such it is not used in the similarity analysis. 

Using the extraction guidelines for extracting ER model components, we can produce ni for 

the example as shown in Figure 2. 

monitors 

Traffic System 

Figure 2: ER Model 

The corresponding set members are shown below. These sets represent the structural form of 

the functional software requirement statement. 

E = {system, traffic} 

Q = {monitors (system, traffic)} 

A = {null} 

N = {the, the} 

5.2.5 Inconsistency metric Y) 

The research proposition states that if is high, then a conflict is likely to exist 
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between r, and rt. vF(^1,^r7) represents the possibility that elements of two structures do 

not agree with each other. A set-based similarity measure between two structures can be used 

to assess the overlapping elements between the structures. 

Two measures of similarity were considered, namely, Tversky's measure of similarity 

(Tversky 1977) and Edit Distances (Ristad 1998). Edit distances is used in genetics research. 

Tversky's measure of similarity was used because of the set based representation and that 

was developed irrespective of the field of research (i.e. genetics), essentially both measures 

are different. Tversky's measure of similarity measure is also readily adaptable to the 

enumeration of common and unique elements. Rodriquez (2003) used Tversky's measure of 

similarity in finding semantic similarity among entity classes. Tversky's measure applied to 

entity classes provides a good starting point for measuring similarity in ER Models. 

Given two ER models, /r, and 7tj, we can perform set operations on elements of ki and ttj to 

determine which elements the models have in common and which ones are different. 

0^ (tt, u nJ ) is the set of all elements of set type K (e.g., entities, attributes, or 

relationships) and 0% (%", n 71, ) is the set of common elements of set type K. We can define 

those elements found in % but not in jjj as (%", - Jtj ) = (tt, U n^)-<bK ). Similarly 

for Ttj we obtain0^ {ky -ni) = <S?K(;r,. U7T j ) -0 K (7r i ) .  Using the elements from sets E, R, 

and A, we can obtain the cardinality of the sets based on equal weights for the three sets 

giving us, 
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p{n, (*", n1 + \®R (*, n"j] +K ^Xj] > • 
f(w, -^ )=| <Dg (tt, - tf, ) | +1$« k -^ )l+1^ -îtj)\ and 

f(tVj - a t)= | Og -^)| + |O f i  k -tt i)\+\Oa {tïj -n) |. 

We can then define the similarity of /r,- and as the difference between the number of 

common elements and those elements that are not in common, giving us 

Sk, ) =  7 , F ( t t ,  n ^ . ) - z 2 F ( ^ r ,  -  T T ,  ) -  z 3 F  

where, 71,72 and 73 > 0, are assignable weights assumed to be 71=72-73 =1- The weights are 

used to assign importance to each function depending on the context of similarity. To 

normalize S (n,, 7ry ) between 0 and 1, it is necessary to determine the upper and lower 

bounds of S (#,, n j ) . The upper bound corresponds to min (| n t  |, | n}  | ) ,  which would be  the  

largest number of elements that x, and 75 could have in common. Likewise, the lower bound 

corresponds to -(j | + | n j |) representing the condition when all elements are different. 

The normalized similarity , is given by 

(  ^ t.- u J  VIV,, itj J= 1—n—1'\ Mi 1 I i\\ '  w h l c h  educes  to  
m m kl 'h i r i -k l + Fy|JJ  

( s 5(^,^)+|^.| + |^.| 
' kj r . /i 11 i'\ I » I I • 

min^,.|,|^; J+|^| + kv | 
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5.3 Selection of suitable datasets for requirements based on known case 

studies 

Four case studies were selected to produce four separate datasets. Some case studies were 

selected with a small set of requirement statements in order to show the basic application of 

the methodology. For example, the first test case had 3 requirements. The second test case 

had 5 requirements and had been studied previously by two researchers. This test case 

involved a project with known conflicts and inconsistencies that had been previously 

analyzed using logical methods. Other case studies were considered either because the 

nature of the known conflict is apparent, there were known problems in the software, or the 

model size was limited in scope. The small number of statements is important because 

natural language can be difficult to analyze on a large scale. Therefore, a limited number of 

statements were used to confirm the author's proposition. 

5.4 Comparison of the results for Y(#, ,%%) and known inconsistencies 

in the datasets 

By comparing the results for with known inconsistencies in the datasets, the 

reliability of the metric can be assessed. This comparison will indicate whether different 

inconsistencies exist in the document and provide a better understanding of the nature of the 

underlying conflict(s). 
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5.5 Comparison with Predicate Logic 

Predicate logic was also used to detect inconsistencies in the datasets from the test cases.. 

The use of predicate logic helps to clarify the different types of inconsistency detected in the 

case studies (i.e., any differences between logical and structural inconsistency). This 

approach was used because previous researchers have used this method to identify known 

inconsistencies and conflict from a logical view. These results were compared with those 

obtained for i,Kj) to determine if there are differences. Another reason for using 

predicate logic is that predicate logic has been an accepted method for detecting 

inconsistency. 
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Chapter 6 Test Cases 

In all, 4 test cases (i.e. containing a total number of 41 statements) are presented covering 

multiple software system domains. The studies include the controlling a pump, an automated 

dispatch system, robots in a factory, and an airport baggage scheduling system. These studies 

all have some degree of dependency between objects in their respective systems. 

Dependency is important because the proposed metric uses similarity analysis as such some 

degree of dependency is required. 

In brief, the Sump Pump test case has a relative small requirement set of 3 statements. The 

next case of the London Ambulance Service has 5 statements. The Production Cell test case 

has 8 statements while the DIA Airport test case has 25 statements. The case studies address 

control scenarios having different levels of complexity. Sump Pump 

6.1.1 Description 

The Sump Pump test case is a modified pump example from (Hooman 1995; Chechik 2001 ) 

that contains 3 statements in all. Though a relatively small data set, it provides a good entry 

point for detecting inconsistencies (i.e., if ,nj ) is not successful for this study, then it 

is likely a poor metric). This system also shows the core concept of validation in terms of 

known system concerns that are conflicts. This takes the form of providing a set of ideal 

requirements R* for analysis. R* is assumed to be true when we have a system that is 

predefined based on well known implementation. Such systems have standard requirements 

that have been successfully applied several times. Given R*, we generate an acceptable 
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conflict in the system and introduce R (i.e., requirement statement) that produces a conflict. 

A diagram of the Sump Pump System is given in Figure 7. 

Sump 

When fluid in the system reaches the level associated with a discrete sensor, the change in 

signal is detected by the Controller. Based on the control logic, the Controller can turn the 

power for the sump pump on or off. 

6.2 London Ambulance Service (LAS) 

6.2.1 Description 

The London Ambulance Service (LAS) has been used in requirements engineering because 

of its known inconsistencies (Flowers 1996; Hunter 1995; Zowghi 2001; Sanni 2005). When 

the LAS system was deployed on October 26, 1992, it suffered from many problems. For 

example, the Automatic Vehicle Locating System (AVLS) could not track the location and 

Sense 
High Level 

Low Level 

Basin Signal 

Signal 
Controller 

Figure 3: Sump Pump System 
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status of some of the dispatch units resulting in the assignment of multiple vehicles to the 

same incidents (Finkelstein 1996). A fatal incident occurred when an ambulance failed to 

arrive at its destination on time. At times, the volume of calls and messages overwhelmed the 

system. After a series of serious problems, the system was shut down and terminated. 

Finkelstein (1996) found that some areas were not fully defined in the Software 

Requirements Specifications (SRS). A subset of the original functional software 

requirements for the LAS is given in Table 2 in Appendix B. 

6.3 Production Cell at Karlsruhe 

6.3.1 Description 

A set of requirements (see Table 3 in Appendix B) are given for an existing/theoretical 

production cell (Lewerentz 1995). This set of requirements is tested based on the safety 

concerns and possible conflicts as discussed in the paper. 

The author assumes that the CL is representative of the original natural language 

requirements. A pictorial representation of the system is shown in Figure 4. The words in the 

diagram are based on the modified CL lexicon. The original words are shown in 

parentheses. 
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Metal 
(Plate) 

First 
Track 
(Feed 
Belt) 

' 

Engine 
(Crane) 

System' 
(Robot) First Hand Second Hand 

Top 
(Table) 

Machine 
(Press) 

i i 

Second 
Track 

(Deposit 
Belt) 

Figure 4: Production Cell System 

6.4 Denver International Airport Automated Baggage Handling System 

(ABHS) 

6.4.1 Description 

Using similar principles in the general field of investigation such as accident reconstruction, 

the ABHS requirements were reconstructed by using a collection of information available in 

the literature and on the web. The ABHS is a complex software system that communicates 

with a number of baggage handling related devices in the airport (03.25.05 DIA Description). 

The system experienced numerous problems when it was implemented. The control software 

played a significant role in these problems. The actual requirements were not available. 

Therefore, in order to develop the requirements, the nouns in the DIA Description were used 
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as a basis for building the functional software requirements for the system. 
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Chapter 7 Results 

7.1 Sump Pump 

The following pair of requirement statements are assumed to form an ideal requirement set, 

R*, for the controller and is given by, 

R* = {r„r2} 

where, 

r i ;  When the  f lu id  level  reaches  the  high threshold ,  then turn  the  pump on 

r2: When the fluid level reaches the low threshold, then turn the pump off. 

Suppose we introduce a third statement that generates a known conflict of assigning multiple 

fluid levels to the action of turning the pump off. This conflict as described previously is a 

known class of conflict. We now have the following requirement set, 

where, 

ry. When the fluid level is between low and high then the pump is off. 

The parse trees for the three requirements are shown in Figures 5 through 7. 
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NP 

ZX 
DT NN VBZ 

VP 

ADJP 

The level is JJ RB 

high then NP VP 

/X /\ 
DT NN VBZ ADJP 

the pump is JJ 

on 

Figure 5: Requirement #1 Parse Tree 

NP VP 

DT NN VBZ ADJP 

The level is JJ RB 

I I 
low then 

NP VP 

DT NN VBZ ADJP 

I I I I 
the pump is JJ 

I 
off 

Figure 6: Requirement #2 Parse Tree 
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NP VP 

/\ ^—^7 

DT NN VBZ PP 

The level is IN 

NP VP 

/\ /\ 
DT NN VBZ ADJP 

ADVP the pump is JJ 

RB off ADJP 

i i 
between JJ CC JJ then 

high and low 

Figure 7: Requirement #3 Parse Tree 

By applying Chen's transformation rules, the ER Models in Figures 8 to 10 were produced. 

Level Pump 

High on High on 

Figure 8: Requirement #1 ER Model 
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then 

Level 

Low 

Pump 

Off 

Figure 9: Requirement #2 ER Model 

then 

Pump 

Off Between High and Low 

Level 

Figure 10: Requirement #3 ER Model 

Vp 1̂ -  ̂ j 
The following calculations describe how v " 1 ' was determined for requirements 1 and 

2. 

1 ( % i  f l  n 2 ) \  =  |  { l e v e l ,  p u m p }  |  

I Oi A 2̂)1 = \ {then}\ 

10^ Oi  A ni)\ = |  {(/)} |  

F( tt,  n ; r 2 )  =  2  +  l  +  0  = 3  
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F (* i -Xi)= 2  

F { T Z 2 - K X ) = 2  

S (tti , 7Vi) = 3 — 2 — 2 = - 1 

min {\n\\,\n2\) = \n2\ = 5 

(N + \tt2\) =5 + 5 = 10 

^ j 
The value for v " il can be calculated in a similar manner for each possible 

combination of requirements as shown in the table below 

Table 4 Sump Pump '71J ^ Level 

Pair 

n,r2 0.8 
r\,r2 0.6 
n, r\ 0.6 

For this system, it is well known that r\ and r2 are not in conflict. This suggests that a value 

of 0.6 for j ) is not sufficient to indicate a conflict. The value of VP(^3,^2) 

indicates a potential conflict between r$ and r2. This can be attributed to similar actions of 
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turning the pump off. vP(^3,^rl) does not show a conflict. This is because r-$ describes how 

the pump enters the off state while r, describes how the pump enters the on state. 

7.1.1 Sump Pump Predicate Logic Comparison 

Based on R, we can reason using predicate logic as follows. 

A = When the level reaches the high threshold 

B = the pump is on 

C = When the level reaches the low threshold 

D = the pump is off 

E = When the level is between low and high 

R can be stated as a set of logic statements, {A => B, C => D, E => D}. Given these logic 

statements, we can deduce that C A E => D. Submitting these statements to a theorem prover 

using Zowghi's approach (i.e., based on negation) will not return a logical inconsistency. 

This is true because the methodology relies heavily upon negation in detecting an 

inconsistency. 

Alternatively, the conflict can be explained using partial sets, as follows. 

• When fluid levels are high (fluid levels => high) 

• When fluid levels are low (fluid levels => low) 
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• When some fluid levels are high and some fluid levels are low 

(some fluid levels => high A some levels => low) 

• Pump is off (pump => off) 

• Pump is on (pump => on) 

• When fluid levels are low then the pump is off 

(fluid levels => low => pump => off) 

• When some fluid levels are high and some fluid levels are low then the pump is off 

(some levels => high A some levels=> low) => (pump =>off) 

This is equivalent to C A E => D. 

The conflict occurs when some fluid levels shut the pump off irrespective of if they are high 

or low levels. The set of levels contains both high and low (i.e. structurally overlapping 

requirements), when ideally it should contain high or low (i.e. distinct requirements). Thus, 

we find the same state generating the same action (i.e., the pump being switched off) when it 

should be a single state (i.e. as opposed to partial states). 

Hausmann (2002) also used a similar technique in detecting conflict in use case diagrams. 

When he gave an example of a conflict between two use case transformations of "pay bill" 
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and "settle bill", both transformations produce the result of removing the relationship "owns" 

between the goods and the shop (i.e., they overlap in items that are deleted). In effect, they 

cancel each other out, creating some form of disagreement. Hausmann's rule can be restated 

as "If two transformations disable one another, they cannot be part of the same 

transformation sequence". This is also part of the same class of conflict in terms of "Two 

life-forms competing for the same limited resource." Ideally they are in conflict and they 

cannot co-exist in the same space. The author believes this concept to be also true of 

functional requirement statements. 

7.2 London Ambulance Service (LAS) 

vp (?r 71 ) 
For requirements IRC.2 and OM.l v " J ' was found as follows. 

I {n\ f| n2)| = I {operator, call, ambulance} | 

1 ( / r i  f ]  % z ) |  =  I  {receives,should dispatch} | 

I (n\ fl 7ti)\ - I {phone,nearest,available) \ 

F{nx r\it2) = 3 + 2 + 3 = 8 

f{x\ -7T2) = 3 

F{k2 - nx ) = 0 

S (tt1, 7ti) —8—3 — 0 — 5 
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min(|%i|, |%2|) = |%2| = 8 

(|^i| + \n2\) = 11 + 8 = 19 

- ffrl^89 

The results for all pairings are shown in Table 5. 

Table 5: LAS level 

IRC.2|OM.l 0.89 
OM.l OM.2 0.8 
IRC.3 OM.l 0.77 
IRC.3|OM.2 0.75 
IRC.2|IRC.3 0.75 
IRC.2|OM.2 0.72 
IRC.l IRC.2 0.29 
IRC.1|IRC.3 0.25 
IRC.1IOM.1 0 
IRC.l|OM.2 0 

Values for ,ns ) as low as 0.72 indicate potential conflicts in the set. For IRC.2|OM.2, 

the potential conflict appears to be redundancy. This is also true for the IRC.2|IRC.3 pair 

where there is unnecessary in formation in IRC.3 about the ambulance. This suggests that 

there may be a threshold value for Y between redundancies and conflicts. Further 

research would be necessary to investigate this possible threshold. 

The IRC.2|OM.l pair has the highest value, suggesting that this pair of 
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requirements should be reexamined. On closer examination of the two requirements, OM. 1 

could be interpreted as an ambulance being dispatched whenever a phone call is received 

(e.g., wrong number or information request). This may relate to the known problem of large 

call volumes as previously discussed. This also relates to the same class of conflict described 

by Lorenz (1973), when two life forms that exist are so similar that they compete for the 

same scarce resources. In this case, we have medical and non-medical related emergency 

calls competing for the same resource (i.e., the call center). 

Another interesting observation is that those pairs with IRC.l consistently have the lowest 

values. Therefore, this implies that IRC.l is the requirement with the least conflicts because 

its pairings with other requirements has consistently low ) values. 

Based on the results thus far, when a structural inconsistency exists, requirements may tend 

to overlap more than necessary. It appears that when requirement pairs have a 

Yvalue near 0.8, then these requirements should be reexamined and revised 

because a conflict may exist. 

7.2.1 London Ambulance Service Predicate Logic Comparison 

Since this test case is taken from Zowghi et al (2001), we make a comparison based on our 

method and their predicate logic method. They reported a logical inconsistency for 

IRC.3|OM.l. This pair can be found in Table 4 and has a value of 0.77 for Y(%-, ,%%) . This 

suggests a threshold value of 0.77 for Y, but this may be context dependent and 

warrants further research. Zowghi et al did not address the IRC.2 and OM.l pair in their 
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analysis. This confirms two assumptions made earlier that the logic method checks for the 

existence of logical inconsistency while the proposed methodology can potentially measure 

the degree of conflict based on the potential structural inconsistency. 

7.3 Production Cell at Karlsruhe 

Table 6 shows the results for the requirements set for ,n} ) values greater than 0.5. All 

values can be found in Appendix B. 

Table 6: Production Cell n} ) levels 

r, fj w f a t t c j )  

R003 R006 0.8 
R006 R008 0.79 
R003 R008 0.64 
R001 R007 0.6 

The pair of statements R003 and R006 has the highest value of inconsistency and (R006 , 

R008 pair is also very close to this value. We can view this in terms of the first and second 

hand on the robot retrieving the metal from the same location or an unknown location. We 

know that the first hand of the robot gets the metal from the top. The second hand gets the 

metal from the open machine. Specification of the requirement hints at under specification 

and vagueness (i.e. ambiguity). This conflict is related to an instance of logical inconsistency 

reported by Zowghi (2001) as a pair of tacit requirements. Tacit requirement are the type of 
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requirements that leave designers, developers of systems guessing or assuming and filling in 

the blanks. 

For R006 and R008, we see that the second hand gets the metal seems to be in conflict with 

the engine gets the metal. These two statements are vague and do not clearly state the 

location where the "getting" of the metal should occur. 

7.3.1 Production Cell Predicate Logic Comparison 

The logical comparison is interesting because it not only shows a clear distinction between 

both methodologies but shows that in order for the logical statement to be clearly understood 

the requirement statements have to undergo some minor revisions. This is important because 

the premise of a potential structural inconsistency is that a revision is implied. For this test 

case, it appears that when a requirement statement requires a minor revision in order for it to 

be adequately represented in predicate logic, then it may contain some potential structural 

inconsistency. This can be confirmed from the logical statements as follows. 

R001: The first track =* metal moved to the top 

R002: The top moves to a good position => removal by the first hand of the system 

R003: The first hand of the system => the metal is retrieved 

R004: The system turns => the first hand points to the open machine 

R005: The machine => the metal is changed A open for the second hand 
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R006: The second hand of the system => the retrieved metal A turns A metal put on 

second track 

R007: The second track => metal moves to the engine 

R008: The engine => the retrieved metal gotA metal put on first track 

The production cell is setup so that it can continuously. This implies that each requirement is 

connected to the next requirement such that C => B and B => C . This can be assumed true 

for R001 through R008. Not withstanding, this additional knowledge based on Zowghi's 

approach does not improve the detection of a logical inconsistency for this test case. This 

additional information can be used to obtain new logical statements. Now comparing both 

methods we have the following. 

R003: The first hand of the system => the metal is retrieved 

R006: The second hand of the system => the retrieved metal A turns A metal put on 

second track 

R008: The engine => the retrieved metalA metal put on first track 

Based on Zowghi's methodology it is difficult to determine whether an inconsistency exists. 

The logical method does not appear applicable in this instance due to its reliance on negation. 
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7.4 Denver International Airport (DIA) Automated Baggage Handling 

System (ABHS) 

Based on an initial description given by an online project (DIA Description) and Neufville 

(1994), the following objects were specified for the system in natural language and controlled 

language, 

Table 7: DIA CL Objects 

NL Objects CL Objects 
System System 

Network Wire 

DCV Container 

PLC Computer 

Motor Engine 

Airplane Airplane 

Passenger Person 

Baggage Bag 

Conveyor Belt Line 

Check-in Agent Agent 

Sensor Device 

Table 8 shows the 'n)> values for requirements pairs where 0.6 The 

complete set of values can be found in Appendix B. 
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Table 8 : ABHS k., Jtj ) levels 

r, rj 

R008 R009 0.75 

R008 R010 0.75 

R009 R010 0.75 

R011 R012 0.75 

R017 R025 0.75 

ROM R020 0.6 

R016 R025 0.6 

R018 R024 0.6 

Upon examination, these pairings do not show any apparent conflict though the R008|R009 

pair indicates there may be some ambiguity in the signal being sent to possibly different 

devices. The R017|R025 pair shows no conflict or redundancy. This indicates that there may 

be missing information in the ER model that would help differentiate these two requirements 

[n TV ) 
and lower the v " 1 ' value. Another possibility is that the semantics of language should 

be considered. 

7.4.1 DIA Automated Baggage System Predicate Logic Comparison 

This comparison shows differences in the methodologies. The requirements in Table 7 can 
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be represented as the following logic statements. 

R008: The wire => a signal is transmitted to the device 

R009: The wire => a signal is transmitted to the small container 

R010: The wire => a signal is transmitted to the large container 

ROI 1 : A person => a small bag is owned 

R012: A person => a large bag is owned 

R017: The system sends an empty container to a bag 

R025: The system sends a full container to a person 

It appears that when a requirement has to been considerably modified in order to represent it 

in logic; an inconsistency can be introduced or it may not be a functional requirement. For 

example, a person has a small or large bag may not necessarily be requirement though the 

person interacts with the system. This was also the case based on the LAS results where 

IRC.l "A medical emergency is either an illness or an accident". Though this requirement 

had the lowest PSI, it was a simple classification of a medical emergency. For the ABHS, 

ROI 1 and R012 describe the function of a person with respect to the function of the system. 
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Chapter 8 Conclusions 

The results of the research show reasonable support for the research proposition that when a 

high numeric value of potential structural inconsistency is observed for a pair of functional 

software requirements, then a conflict is likely. The new metric for detecting a possible 

conflict via potential structural inconsistency uses a normalized Tversky's similarity measure 

that can be used to compare pairs of requirements using a range of 0 to 1. The normalization 

makes it easier to analyze and reason about the actual similarity values. One issue for further 

research is that Y (#,,%%) does not differentiate between a conflict, redundancy, and 

ambiguity (i.e. these concepts appear to be interrelated). Additional information (e.g., 

semantics) is necessary to differentiate these characteristics of a requirement statement. 

This research has addressed the problem of reasoning about inconsistencies and conflict 

using different representations of software requirements specification. It has been shown that 

the semi-formal of representation identifies a slightly different set of inconsistencies than 

formal methods. A potential advantage of the new metric is that it provides a numeric 

indicator for the degree of conflict versus the Boolean indicators for logical inconsistency. 

A high value ranging between 0.7 and 0.8 was repeatedly observed in all the four case studies 

from different fields. This leads a strong argument for reexamining or revising requirements 

around this value. The numeric scaling of the requirements may be useful in the prioritization 

of requirements. The numeric characterization of requirements document through the use of 

structural metrics, introduces a numerical metric into the detection of conflict that does not 

exist in the logical method. The implication of this is that requirement specifications can 
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be prioritized based on numeric value of structural metrics. The need for metric based 

prioritization cannot be overstated due to the large volume of information in a requirements 

document. 

This study provided some insights into the nature of conflict as it relates to the domain of 

requirements engineering. One observed characteristic was the "the propagation" of conflict 

through software requirement specifications. A conflict can be considered to be an object that 

can propagate through the requirements based on the overall structural relationship between 

the requirement pairings. This was observed in part through the chaining of requirement 

pairings with high levels of PSI in test cases 3 and 4. Some requirements were reoccurring, 

forming chains of structural inconsistency. This concept of chained structured pairs of 

requirements may show some form of conflict propagation through the requirements 

document. 

8.1 Future Research 

Results from this study indicate that further differentiation of problems with requirements 

(e.g., redundancy and ambiguity) may be possible with some revisions to the metric. If 

multiple thresholds can be found, then this approach could provide a more accurate 

assessment of requirements. 

Additional information from the semantics of the statements could be useful in providing 

greater differentiation. New methods are needed that can characterize and check the 

semantics of pairs of requirement statements. 
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To make this method more suitable for routine use, full automation of the methodology 

would be advantageous but would be very difficult to achieve. Several steps currently 

require manual intervention due to the complexities of language. 
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Appendix A: Penn Tree Bank Tagset 
POS Tag Description Example 
cc coordinating conjunction and 
CD cardinal number 1, third 
DT Determiner the 
EX existential there there is 
FW foreign word d'hoevre 
IN preposition/ subordinating 

conjunction 
in, of, like 

JJ Adjective green 
JJR adjective, comparative greener 
JJS adjective, superlative greenest 
LS list marker 1) 
MD Modal could, will 
NN noun, singular or mass table 
NNS noun plural tables 
NNP proper noun, singular John 
NNPS proper noun, plural Vikings 
PDT Predeterminer both the boys 
POS Possessive ending friend's 
PRP personal pronoun I, he, it 
PRP$ Possessive pronoun my, his 
RB Adverb however, usually, naturally, here, good 
RBR adverb, comparative better 
RBS adverb, superlative best 
RP Particle give up 
TO To to go, to him 
UH Inteqection uhhuhhuhh 
VB verb, base form take 
VBD verb, past tense took 
VBG verb, gerund/present participle taking 
VBN verb, past participle taken 
VBP verb, sing, present, non-3d take 
VBZ verb, 3rd person sing. Present takes 
WDT wh-determiner which 
WP wh-pronoun who, what 
WP$ possessive wh-pronoun whose 
WRB wh-abverb where, when 
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Appendix B: Test Case Requirement 

Sump Pump (SP): 

Table B. 1 SP NL Functional Requirements 

Requirements 
ID 

NL Functional Requirements Specifications 

1 When the fluid level reaches the high threshold, then turn the pump on 

2 When the fluid level reaches the low threshold, then turn the pump off 

3 When the fluid level is between low and high then the pump is off 

Table B.2 SP CL Functional Requirements 

Requirements ID CL Functional Requirements Specifications 
1 When the fluid level is high then the pump is on 

2 When the fluid level is low then the pump is off 

3 When the fluid level is between low and high then the pump is off 

Table B.3 SP PSI Metric 

n rj 

3 2 0.8 
1 2 0.6 
3 1 0.6 
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London Ambulance Service(LAS): 

Table B.4 LAS NL Functional Requirements 

Requirements ID NL Functional Requirements Specifications 
IRC.l A medical emergency is either an illness or an accident 

IRC.2 When an operator receives a phone call concerning a medical 
emergency, the operator should dispatch the nearest available 

ambulance 
IRC.3 When an operator receives a phone call concerning a non-medical 

emergency, the operator should not dispatch an ambulance and he 
should transfer the phone call to another service. 

OM.l When an operator receives a phone call, the operator should 
dispatch the nearest available ambulance. 

OM.2 When an operator receives a phone call, if an ambulance is not 
the nearest available, then the operator should not dispatch that 

ambulance. 

Table B.5 LAS PSI Metric 

r, fj 

IRC.2 OM.l 0.89 
OM.l OM.2 0.8 
IRC.3 OM.l 0.77 
IRC.3 OM.2 0.75 
IRC.2 IRC.3 0.75 
IRC.2 OM.2 0.72 
IRC.l IRC.2 0.29 
IRC.l IRC.3 0.25 
IRC.l OM.l 0 
IRC.l OM.2 0 
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Production Cell: 

Table B.6 PC NL Functional Requirements 

Requirements 
ID 

NL Functional Requirement Specification 

R001 The feed belts conveys the metal plate to the elevating rotary table 

R002 The elevating rotary table is moved to a position adequate for unloading by 
the first robot arm 

R003 The first robot arm picks up the metal plate 

R004 The robot rotates counterclockwise so that arm 1 points to the open press, 
places the metal plate into it and then withdraws from the press 

R005 The press forges the metal blank and opens again 

R006 The robot retrieves the metal plate with its second arm, rotates further and 
unloads the plate on the deposit belt 

R007 The deposit belt transports the plate to the traveling crane 

R008 The traveling crane picks up the metal plate, moves to the feed belt, and 
unloads the metal plate on it 

Table B.7 PC CL Functional Requirements 

Requirements 
ID 

CL Functional Requirements Specifications 

R001 The first track moves the metal to the top 

R002 The top moves to a good position for removal by the first hand of the system 

R003 The first hand of the system gets the metal 

R004 The system turns so that the first hand points to the open machine 

R005 The machine changes the metal and opens for the second hand 

R006 The second hand of the system gets the metal and turns to put the metal on the 
second track 

R007 The second track moves the metal to the engine 

R008 The engine gets the metal and puts the metal on the first track 
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Table B.8 PC PSI Metric 

n 0 
1 2 0 
1 3 0.23 
1 4 0.18 
1 5 0.19 
1 6 0.35 
1 7 0.60 
1 8 0.38 
2 3 0.4 
2 4 0.14 
2 5 0.16 
2 6 0.14 
2 7 0 
2 8 0 
3 4 0.2 
3 5 0.43 
3 6 0.8 
3 7 0.23 
3 8 0.64 
4 5 0.32 
4 6 0.14 
4 7 0 
4 8 0 
5 6 0.47 
5 7 0.38 
5 8 0.33 
6 7 0.35 
6 8 0.79 
7 8 0.38 
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Denver International Airport (DIA): 

Table B.9 DIA CL Functional Requirements 

Requirements 
ID 

CL Requirement Specifications 

R001 The system connects with the database 

R002 The system gets the time of a flight from the airport 

R003 The system gets the time of a flight to the airport 

R004 The system measures the flow of a person through the airport 

R005 The system connects a code with a flight 

R006 The system connects a flight with a person 

R007 The system sends a signal to the wire 

R008 The wire transmits a signal to the device 

R009 The wire transmits a signal to the small container 

R010 The wire transmits a signal to the large container 

R011 A person has a small bag 

R012 A person has a large bag 

R013 An agent puts a tag on a bag 

ROM An agent puts a bag on the line 

R015 A line holds a bag 

R016 The system finds a container 

R017 The system sends an empty container to a bag 
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ROI 8 The container moves on the track 

ROI 9 The container has a tag 

R020 The equipment gets the bag from the line and puts the bag in the 
container 

R021 The device identifies the code on the tag 

R022 The device sends the code to the system 

R023 The computer finds the engine 

R024 The engine pushes the container on the track 

R025 The system sends a full container to a person 
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Table B.IO DIA PSI Metric 

n 0 Y (7tl,7t2) 

1 2 0.3 
1 3 0.3 
1 4 0.25 
1 5 0.27 
1 6 0.25 
1 7 0.3 
1 8 0 
1 9 0 
1 10 0 
1 11 0 
1 12 0 
1 13 0 
1 14 0 
1 15 0 
1 16 0.33 
1 17 0.3 
1 18 0 
1 19 0 
1 20 0 
1 21 0 
1 22 0 
1 23 0 
1 24 0 
1 25 0.3 
2 3 0.5 
2 4 0.21 
2 5 0.23 
2 6 0.21 
2 7 0.25 
2 8 0 
2 9 0 
2 10 0 
2 11 0 
2 12 0 
2 13 0 
2 14 0 
2 15 0 
2 16 0.3 
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2 17 0.25 
2 18 0 
2 19 0 
2 20 0.2 
2 21 0 
2 22 0 
2 23 0 
2 24 0 
2 25 0.25 
3 4 0.21 
3 5 0.23 
3 6 0.21 
3 7 0.25 
3 8 0 
3 9 0 
3 10 0 
3 11 0 
3 12 0 
3 13 0 
3 14 0 
3 15 0 
3 16 0.3 
3 17 0.25 
3 18 0 
3 19 0 
3 20 0.2 
3 21 0 
3 22 0 
3 23 0 
3 24 0 
3 25 0.25 
4 5 0.19 
4 6 0.17 
4 7 0.21 
4 8 0 
4 9 0 
4 10 0 
4 11 0 
4 12 0 
4 13 0 
4 14 0 
4 15 0 
4 16 0.25 
4 17 0.21 
4 18 0 
4 19 0 
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4 20 0 
4 21 0 
4 22 0 
4 23 0 
4 24 0 
4 25 0.21 
5 6 0.75 
5 7 0.23 
5 8 0 
5 9 0 
5 10 0 
5 11 0 
5 12 0 
5 13 0 
5 14 0 
5 15 0 
5 16 0.27 
5 17 0.23 
5 18 0 
5 19 0 
5 20 0 
5 21 0.23 
5 22 0.23 
5 23 0 
5 24 0 
5 25 0.23 
6 7 0.21 
6 8 0 
6 9 0 
6 10 0 
6 11 0.21 
6 12 0.21 
6 13 0 
6 14 0 
6 15 0 
6 16 0.25 
6 17 0.21 
6 18 0 
6 19 0 
6 20 0 
6 21 0 
6 22 0 
6 23 0 
6 24 0 
6 25 0.21 
7 8 0.25 
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7 9 0.25 
7 10 0.25 
7 11 0 
7 12 0 
7 13 0 
7 14 0 
7 15 0 
7 16 0.3 
7 17 0.5 
7 18 0 
7 19 0 
7 20 0 
7 21 0 
7 22 0.25 
7 23 0 
7 24 0 
7 25 0.5 
8 9 0.75 
8 10 0.75 
8 11 0 
8 12 0 
8 13 0 
8 14 0 
8 15 0 
8 16 0 
8 17 0 
8 18 0 
8 19 0 
8 20 0 
8 21 0 
8 22 0 
8 23 0 
8 24 0 
8 25 0 
9 10 0.75 
9 11 0 
9 12 0 
9 13 0 
9 14 0 
9 15 0 
9 16 0 
9 17 0 
9 18 0 
9 19 0 
9 . 20 0 
9 21 0 



www.manaraa.com

80 

9 22 0 
9 23 0 
9 24 0 
9 25 0 
10 11 0 
10 12 0 
10 13 0 
10 14 0 
10 15 0 
10 16 0 
10 17 0 
10 18 0 
10 19 0 
10 20 0 
10 21 0 
10 22 0 
10 23 0 
10 24 0 
10 25 0 
11 12 0.75 
11 13 0 
11 14 0.25 
11 15 0.3 
11 16 0 
11 17 0 
11 18 0 
11 19 0.3 
11 20 0.4 
11 21 0 
11 22 0 
11 23 0 
11 24 0 
11 25 0 
12 13 0 
12 14 0.25 
12 15 0.3 
12 16 0 
12 17 0 
12 18 0 
12 19 0.3 
12 20 0.4 
12 21 0 
12 22 0 
12 23 0 
12 24 0 
12 25 0 
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13 14 0.5 
13 15 0 
13 16 0 
13 17 0 
13 18 0 
13 19 0.3 
13 20 0.2 
13 21 0 
13 22 0 
13 23 0 
13 24 0 
13 25 0 
14 15 0.3 
14 16 0 
14 17 0 
14 18 0 
14 19 0 
14 20 0.6 
14 21 0 
14 22 0 
14 23 0 
14 24 0 
14 25 0 
15 16 0 
15 17 0 
15 18 0 
15 19 0 
15 20 0.46 
15 21 0 
15 22 0 
15 23 0 
15 24 0 
15 25 0 
16 17 0.6 
16 18 0.33 
16 19 0.33 
16 20 0 
16 21 0 
16 22 0 
16 23 0.33 
16 24 0.3 
16 25 0.6 
17 18 0.3 
17 19 0.3 
17 20 0 
17 21 0 
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17 22 0.25 
17 23 0 
17 24 0.25 
17 25 0.75 
18 19 0.33 
18 20 0 
18 21 0 
18 22 0 
18 23 0 
18 24 0.6 
18 25 0.3 
19 20 0 
19 21 0 
19 22 0 
19 23 0 
19 24 0.3 
19 25 0.3 
20 21 0 
20 22 0 
20 23 0 
20 24 0 
20 25 0 
21 22 0.5 
21 23 0 
21 24 0 
21 25 0 
22 23 0 
22 24 0 
22 25 0.25 
23 24 0.3 
23 25 0 
24 25 0.25 
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