
www.manaraa.com

Retrospective Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2006

A new metric for detecting conflict in functional
software requirements
Adegboyega Oladayo Sanni
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd

Part of the Industrial Engineering Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Sanni, Adegboyega Oladayo, "A new metric for detecting conflict in functional software requirements " (2006). Retrospective Theses and
Dissertations. 1298.
https://lib.dr.iastate.edu/rtd/1298

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F1298&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F1298&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F1298&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F1298&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F1298&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F1298&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/307?utm_source=lib.dr.iastate.edu%2Frtd%2F1298&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd/1298?utm_source=lib.dr.iastate.edu%2Frtd%2F1298&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

www.manaraa.com

A new metric for detecting conflict in

functional software requirements

by

Adegboyega Oladayo Sanni

A dissertation submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Major: Industrial Engineering

Program of Study Committee:
John Jackman, Major Professor

Sarah M. Ryan
Sigurdur Olafsson
Charles B. Shrader

Anthony M.Townsend

Iowa State University

Ames, Iowa

2006

Copyright © Adegboyega Oladayo Sanni, 2006. All rights reserved.

www.manaraa.com

UMI Number: 3217312

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy

submitted. Broken or indistinct print, colored or poor quality illustrations and

photographs, print bleed-through, substandard margins, and improper

alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript

and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

UMI
UMI Microform 3217312

Copyright 2006 by ProQuest Information and Learning Company.

All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road

P.O. Box 1346
Ann Arbor, Ml 48106-1346

www.manaraa.com

ii

Graduate College

Iowa State University

This is to certify that the doctoral dissertation of

Adegboyega Oladayo Sanni

has met the dissertation requirements of Iowa State University

Committee Member

Committee Member

Committee Member

CommitteeMember

[ajor Hrofessoi

or t Manor P ram

Signature was redacted for privacy.

Signature was redacted for privacy.

Signature was redacted for privacy.

Signature was redacted for privacy.

Signature was redacted for privacy.

Signature was redacted for privacy.

www.manaraa.com

iii

Table of Contents

List Of Tables vi

List Of Figures vii

Acknowledgements viii

Abstract ix

Chapter 1 Introduction 1

1.1 Problem Description 4

1.2 Motivation 6

1.3 Research Roadmap 7

Chapter 2 Literature Review 9

Chapter 3 Research Objectives 17

3.1 Primary Research Question 19

3.2 Research Proposition 19

3.3 Inferences 19

3.4 Verify with test cases 19

3.4.1 Conditions 20

3.4.2 Expected Results 20

Chapter 4 Terminology 21

4.1 Notation 21

4.2 Definitions 22

4.2.1 Attribute 22

4.2.2 Cardinality 22

www.manaraa.com

iv

4.2.3 Modified Controlled Language Lexicon 22

4.2.4 Entity Relationship Model for a Requirement 22

4.2.5 Entity 23

4.2.6 Functional Software Requirements 23

4.2.7 Part Of Speech (POS) 23

4.2.8 Parse Tree 24

4.2.9 Parent Node 24

4.2.10 Leaf Node 24

4.2.11 Phrases 24

4.2.12 Potential Structural Inconsistency 25

4.2.13 Relationship .25

4.2.14 Total Elements 25

4.2.15 Common Elements 25

Chapter 5 Research Methodology 26

5.1 Methodology Overview 26

5.2 Derivation of Yfrom (r,, ry) 26

5.2.1 Transform rt into r/ 27

5.2.2 Parsing r,' using the Stanford Parser 29

5.2.3 Modify the Parse Tree Using the Modified CL Lexicon 30

5.2.4 Transform the modified parse tree into 7T, 30

5.2.5 Inconsistency metric j) 34

5.3 Selection of suitable datasets for requirements based on known case studies 37

5.4 Comparison of the results for and known inconsistencies in the

datasets 37

5.5 Comparison with Predicate Logic 38

www.manaraa.com

V

Chapter 6 Test Cases 39

6.1.1 Description 39

6.2 London Ambulance Service (LAS) 40

6.2.1 Description 40

6.3 Production Cell at Karlsruhe 41

6.3.1 Description 41

6.4 Denver International Airport Automated Baggage Handling System (ABHS) 42

6.4.1 Description 42

Chapter 7 Results 44

7.1 Sump Pump 44

7.1.1 Sump Pump Predicate Logic Comparison 49

7.2 London Ambulance Service (LAS) 51

7.2.1 London Ambulance Service Predicate Logic Comparison 53

7.3 Production Cell at Karlsruhe 54

7.3.1 Production Cell Predicate Logic Comparison 55

7.4 Denver International Airport (DIA) Automated Baggage Handling System

(ABHS) 57

7.4.1 DIA Automated Baggage System Predicate Logic Comparison 58

Chapter 8 Conclusions 60

8.1 Future Research 61

References 63

Web References 68

www.manaraa.com

vi

List of Tables

Table 1: Parse Tree Parent Nodes. 24

Table 2: POS tags for the example 29

Table 3: ER Model Components 32

Table 4: Sump Pump , nj) Level 48

Table 5: LAS YLevel. 52

Table 6: Production Cell Level 54

Table 7:DIA CL Objects 57

Table 8: ABHS Y(%-,, n}) Level 58

www.manaraa.com

vii

List of Figures

Figure 1: Parser Output 30

Figure 2: ER Model. 34

Figure 3: Sump Pump System 40

Figure 4: Production Cell System 42

Figure 5: Requirement # 1 Parse Tree 45

Figure 6: Requirement # 2 Parse Tree 45

Figure 7: Requirement # 3 Parse Tree 46

Figure 8: Requirement # 1 ER Model 46

Figure 9: Requirement # 2 ER Model 47

Figure 10: Requirement # 3 ER Model 47

www.manaraa.com

viii

Acknowledgements

I would like to thank God for giving me the grace and wisdom to pursue this new line of

research in the year 2005 Anno Domini. May all the glory, honor, adoration and

wonderful majestic splendor be unto Him.

I would like to thank members of my committee my major Professor Dr. Jackman, Dr.

Ryan, Dr. Olafsson, Dr. Shrader and Dr. Townsend. Dr. Jackman really contributed

immensely to my research without him this research would not have been possible, thank

you once again.

I would to extend my appreciation to former committee members Dr. Ranga, Dr.

Dickerson and Dr. Lutz for their kind support. Thanks to Professors Dr. Sannier and Dr.

Kothari, they might not realize it but they helped improve my understanding of Software

Systems.

Many thanks to my parents Dr. Mr. and Dr. Mrs. Sanni for granting me the opportunity to

travel here to the States and fulfill my dreams. My Aunty and sister for their firm support.

Many thanks to my Uncle and his family for supporting me in the States.

I would like to thank my friends here at ISU from Canada, Brazil, Panama, France,

Germany, Greece, Hungary, Turkey, Denmark, Africa, Jordan, China, Korea, Japan,

Burma, Laos, Taiwan, Thailand, Russia, India and other countries.

www.manaraa.com

ix

Abstract

Typically, the development of software system starts with a goal. The goal is

implemented by following a methodology consisting of phases. Initially, the goal is

formulated as functional requirements when stakeholders of the software system meet and

discuss what the software system should do in order fulfill satisfy needs. The functional

software requirement document is then converted to software design document either

through conceptual model, software code or both. After, the system is tested rigorously

before it is implemented. Since the development of a software system consists of phases

with each phase depending on prior stages, an inconsistency made in the initial phase of

development such as in the requirement specification phase, may be propagated into other

phases. A methodology for detecting conflict in functional software requirements

through level of Potential Structural Inconsistency (PSI) is presented in this research. This

is accomplished, by representing functional software requirements stated in natural

language as structural model (i.e. conceptual model) and similarities between these

models are obtained as a level of potential structural inconsistency. Sample functional

software requirements are analyzed using this methodology and the inconsistency is

compared with a particular type of conflict. In conclusion, various inferences are made

based on the new methodology and recommendations are given for further improvements

and future research.

www.manaraa.com

1

Chapter 1 Introduction

Organizations, business units, governments and institutions use multiple software systems to

support their operations. For example, the National Aerospace Space Agency (NASA) spent

billions of dollars developing high quality software systems to support space exploration.

Some of these systems contributed to major losses in their space programs. An unmanned

Mars Polar Lander crashed in 1999. The crash was attributed to a software bug (Blackburn

2002). Similarly, NASA's counterpart in Europe, the European Space Agency suffered a loss

of over $7 billion when the Ariane 5 rocket exploded during launch (Gleick 1996). The

explosion was blamed on an attempt by Ariane's software to convert a 64-bit floating-point

value into a 16-bit integer value without adequate checks for overflow.

Failures such as these can be traced to multiple possible sources. One of those sources is the

set of software requirements used during the software development process. Undetected

inconsistencies between requirements could result in the implementation of inconsistencies in

software system modules that may lead to embedded errors in the final assembled software

system.

Most organizations use a structured process for developing software in order to mitigate risks

and minimize errors. A common example of this structured process is the Software

Development Life Cycle (SDLC). The phases of the SDLC include specification of

requirements, design of a software system based on the requirements, implementation of the

design (i.e. software coding), testing, deployment, and system maintenance. Early detection

of inconsistencies in the SDLC can help prevent the propagation of errors through the

www.manaraa.com

2

development process. For example, Nelson et al (1999) found that software developers

typically design systems based on requirements that have embedded errors. Apart from not

being able to satisfy user needs, errors in requirements are costly, increase development time

and cause maintenance problems. Nelson stated that

"A software error costing a mere $1 when caught early in the life cycle, costs $5 to

correct at midpoint and $100 to correct later in the life cycle".

From a cost perspective, there is certainly a strong case for early error detection in order to

reduce overall SDLC related costs.

The requirements phase consists of a set of iterative activities including elicitation,

specification, analysis, negotiation, revision and documentation (Lamsweerde 1998).

Elicitation is a data collection activity in which stakeholders (i.e., those who have a stake in

the software system) define the elements of the problem and the associated requirements.

The requirements are specified in natural language and analyzed. If problems arise, such as,

ambiguity or inconsistency, the requirements are negotiated among the stakeholders and

revised. After multiple iterations, the requirements are finally documented. The

requirements phase involves extensive human interactions that can result in numerous

inconsistencies. The sheer volume of information and lack of supporting analytical tools

makes it difficult to detect inconsistencies.

Functional requirements specify the desired properties in the application domain that are

satisfied using the software system. Inconsistencies created by the stakeholders, will

www.manaraa.com

3

propagate into other phases. Therefore, inconsistencies occurring in the requirements phase

(even if detected later) can be expensive to resolve. Methods for detecting inconsistencies in

the requirements phase can help prevent major problems in downstream phases.

Stakeholders have varying concepts of what constitutes a software requirement. Terms such

as requirements, specification and requirements specifications are often used loosely and

interchangeably. The IEEE (IEEE 1998) definition of software and system requirements

specifications defines a System Requirements Specification (SyRS) as

"A description of what the system's customers expect it to do for them, the system's expected

environment, the system's usage profile, its performance parameters, and its expected quality

and effectiveness. "

A Software Requirements Specification (SRS) (IEEE 1998) is defined as

"A specification for a particular software product, program, or set of programs that performs

certain functions in a specific environment. "

Based on the preceding definitions, a requirement in this research context will be defined as

"A description, represented in some form, which captures the needs of one or more

customers for a software system."

An inconsistency occurs when there is a disagreement or conflict between two or more

functional requirement statements.

www.manaraa.com

4

1.1 Problem Description

Stakeholders elicit functional software requirements for a requirements document. Multiple

stakeholders could specify one or more statements for inclusion in the requirements

document. The stakeholders may meet from time to time, reviewing and revising these

requirements. For a requirements phase, it is reasonable to assume that there exists an ideal

set of requirements, R*, that would completely satisfy the users' needs. As stakeholders

progress through the requirements phase, the set of requirements can be defined as R. The

expectation is that R over some period of time will converge to R*.

To an observer, R appears to be stochastic in nature as its cardinality and accuracy increase

and decrease over time. R may contain inconsistencies which cause it to deviate from R*.

In this study, we focus on examining R at an instant in time for some unknown R*. Suppose,

we form a subset of two requirements statements from R. Individually, the statements may

be correct. However, when examined together they may be in conflict. The difficulty lies in

detecting the conflict.

Requirements are usually specified in natural language. These natural language statements

can be understood by a wider audience but can be ambiguous and unstructured as well.

Therefore, other types of representations have been used. There are three basic types of

representations, namely, informal, formal, and semi-formal models (Nuseibeh et al 2000).

Natural language is an informal model. It is often classified as informal because almost

anyone could use natural language to specify needs.

www.manaraa.com

5

The common use of natural language was noted by Berry (03/25/04) who observed that

"Virtually every initial conception for a system is written in natural language. "

In order to reason about inconsistencies in natural language, researchers have introduced

formal models for detecting logical inconsistencies in natural language requirements. Formal

models include formal requirements specification languages such as Software Cost

Reduction (SCR) (Chechik 2001), predicate logic (Zowghi 2001), quasi-logic (Hunter 1995)

and others.

The motivation for formal models is that they are well defined and provide a structure for

reasoning about requirements. For example, if predicate logic statements can be created

from a requirement expressed in natural language, then the requirement can be automatically

assessed for logical inconsistencies using a theorem prover. However, the reasoning

framework provided by the theorem prover is based solely on a classical logic model, which

is an abstraction of the actual requirement. A formal model of natural language requirements

is by no means an all-expressive and encompassing model since it is an abstraction of a

requirement and some fidelity is lost. A theorem prover combined with predicate logic uses

a Boolean value to detect the presence of an inconsistency. This approach is unable to assess

the degree or significance of an inconsistency.

The third form of representing requirements is a semi-formal model. Our study is concerned

with this form of representation that essentially captures a graph view of the requirements.

These views describe structural, behavioral, or temporal properties of a requirement.

www.manaraa.com

6

Practitioners have used semi-formal models such as, Entity Relationship (ER) model, Unified

Modeling Language (UML) Class Diagram, UML Sequence Diagram, Data Flow Diagrams

(DFD), Jackson Frame Diagrams, Flow charts, State Transition Diagram and others to

describe problem domains. A number of researchers have studied the issue of inconsistency

within a semi-formal model (Robinson 1999; Spanoudakis 1999), but did not consider using

structural models to detect potential inconsistencies in natural language requirements. This

may be due to the lack of a suitable structure for reasoning about inconsistencies as in formal

models.

1.2 Motivation

Prior to this study, most of the research on detecting inconsistencies has focused primarily on

logical inconsistencies (Hunter 1995; Zowghi 2001). These methods are Boolean

assessments that indicate the existence of a logical inconsistency. In some cases, there may

be uncertainty as to the existence of an inconsistency because the logical method only

represents a logical view of inconsistency. The author believes that inconsistency has many

forms and representations. Therefore, other views (e.g., structural representation of

functional software requirements) should be investigated. A structural view emphasizes the

relationships between requirement elements and provides a different perspective for the

assessment of inconsistencies. Previous researchers have studied the existence of

inconsistencies, but further investigations are warranted to assess the degree of

inconsistencies and their severity.

www.manaraa.com

7

1.3 Research Roadmap

Chapter 2 discusses the previous research and the relevance to the current research to the

detection of inconsistencies in requirements. Chapter 3 states the research objectives and

formulates the problem in terms of the problem elements and structure. Chapter 4 is the

terminology for the research. Symbols and definitions are given in this section. Chapter 5,

states the methodology based on formalized theories. In conclusion, Chapter 6 gives

background information on the case studies to be investigated. Chapter 7 gives the results of

analyzing software requirements from various case studies. In Chapter 8, a discussion of the

research findings is presented along with conclusions about detecting conflict in functional

software requirements via the level of potential structural inconsistency.

www.manaraa.com

8

Chapter 2 Literature Review

Hausmann (2002) used a semi-formal model to detect conflicts in functional requirements. A

use-case diagram was used to analyze requirement specifications from different stakeholders.

Use-cases are part of the Unified Modeling Language framework (UML) ["Unified Modeling

Language"].The use-case approach captures functional requirements through symbols

consisting of objects and actions. Hausmann refers to the process of gathering and structuring

information for the development of complex software system as often resulting in a set of

overlapping and partly conflicting requirements models. Hausmann recommends that the

requirements should be integrated into a consistent model. Conflict was related to the

problem of potential consistency inconsistency in functional requirements. In a case study,

conflicts were detected in a pair-wise manner based on the use-case diagram and set analysis.

This research indicates that semi-formal models show promise for detecting conflicts in

software requirements specification.

Lamsweerde (1998) described the starting point of requirements elicitation as a set of goals

specified in a high-level language. He introduced a goal specification language (KAOS)

which contained limited constructs in the form of an ontology. These constructs included

goals, agents, operations and objects. Once the goals were specified in KAOS a number of

heuristic methods were used to detect and resolve inconsistencies in logic, structure, and

designations. This ontology demonstrated the importance of classifying requirements based

on some set of defined objects (similar to semi-formal models) before detecting

inconsistency. This approach is similar to other researchers Aircraft European Contractors

www.manaraa.com

9

Manufacturers Association (AECMA) who simplified the problems of ambiguity and

complexity of natural language requirements by creating a small manageable subset of

language for requirements.

Robinson et al (1999) proposed a requirements ontology called Conflict-Oriented

Requirements Analysis (CORA) for stakeholder conflict resolution through requirements

restructuring. The study identifies three steps in restructuring stakeholder requirements

through CORA, namely, conflict identification, resolution generation and resolution

selection. CORA is in the form of a semi-formal model based on the UML class diagram.

This approach reinforces the notion of reasoning about inconsistency in requirements through

semi-formal models. It is important to note that semi-formal models are often used to

represent an ontology.

The ontology of CORA serves as a structural template that models stakeholder requirements.

The models show the interaction of classes and relationships. The goal of this approach is to

resolve stakeholder conflicts. A structural template for requirements suggests that R* and

R(t) have some inherent structure and that resolutions are based on some modification of the

structure or its contents.

A requirement conflict is defined as a structural interaction in CORA. An interesting part of

Robinson's research is that the structural conflict analysis is composed of a recursive pair-

wise comparison of the requirements in CORA for structural differences (i.e. similar to

Hausmann's observations). The structural differences form a tree of structural differences.

Based on CORA, some of these structural differences form a part of a requirement

www.manaraa.com

10

interaction that define a structural conflict. This provides strong support for using a

methodology that is iterative, compares pairs of structures and collects information about

structural differences. The author suggests that the concept of a structural difference lends

itself to the methodology of gathering some form of structural metrics on functional software

requirements in order to determine the occurrence of a conflict.

Spanoudakis et al (1997; 1999) studied potential inconsistencies based on the detection of

ontological overlaps in object-oriented specifications (i.e., semi-formal models) and metric

functions related to semantic and similarity analysis. A reconciliation method was used for

detecting ontological overlaps through the analysis of similarities between object-oriented

viewpoints. These viewpoints represent the partial specifications of the overall requirement

for object-oriented specifications. The method helped to establish a common understanding

of the potential for inconsistency between specification owners through assessment and

verification of the detected ontological overlaps. Their assumption is that the existence of an

overlap in requirement specifications is a precondition for detecting inconsistencies. The

method uses a similarity analysis that measures the distances between specifications based on

three metrics, namely, classification, generalization and attribution. The distances represent

differences in properties of classes, semantic differences and semantic homogeneity. It is

important to note that classes are often part of an ontology and therefore, it is in agreement

with Robinson's approach. The result of the similarity analysis is the overall distance

measures, weighted graph and lists showing properties of classes weighted by importance. As

a result, specification owners can assess the result and vary parameters in order to discover

new overlaps. An example of the method is provided in detecting overlaps between two

www.manaraa.com

11

object-oriented specifications of library borrowers, items and their relations. Most of the

similarities are referred to as structural but show semantic overlaps. For example, a borrower

can be semantically mapped onto Student. This research provides an excellent foundation for

detecting potential inconsistency in semi-formal model though it does not address the

problem of natural language requirements related to structural representations such as the ER

model.

Simple natural language requirements in Italian were transformed into graphical

representations of certain classes of information (Ambriola 1997). The interpretation of the

natural language requirement was performed using a domain dictionary and a set of fuzzy-

logic rules. The graphical representations were data flow diagrams and the ER model

(Thalheim 2000). This methodology provides a basis for generating ER models from natural

language requirements. However, the method does not check for inconsistency in the ER

models. In similar research, Tjoa (1993) presented a tool that can be used to transform

requirement specifications expressed in natural language into a conceptual model. The tool is

called the Data Model Generator (DMG). The DMG is based on the assumption that

syntactic structures of natural language requirement specifications can be translated into a

conceptual model, Extended Entity Relationship Model (EER). Their approach was a set of

rules and heuristics for extracting syntactic information and capturing static aspects such as

entities, entity types, attributes and relationship types. It also showed the degree and

connectivity between (mandatory, optional) of relationship types (such as, mandatory or

optional). The research is significant because it addressed the issue of creating an ER model

from natural language requirements. They noted that one advantage of the system is the

www.manaraa.com

12

automated extraction of models when a user is inundated with a large amount of textual

requirements. One limitation though is that Ambriola (1997) and Tjoa (1993) did not address

the detection of inconsistencies in the semi-formal models.

In related work, Palmer (1992) proposed an integrated environment for requirements

engineering. It supports a broad range of requirements engineering activities with the

inclusion of requirements elicitation, classification, analysis, traceability and design. Of

interest are the Lexscan and Knowledge-Based Requirements System (KBRS) modules. The

Lexscan is an automated tool that can be used to analyze natural language requirements

based on syntax. It classifies natural language requirements through indexing and clustering

methods as opposed to the reconciliation method, which uses a set-based method. The

indexing and clustering methods are used to distinguish between similar requirements.

Classified requirements are passed to the KBRS for detecting a number of problems such as

conflict, inconsistencies, incompleteness and others. The KBRS is a knowledge-based tool.

The KBRS detects conflict based on captured knowledge, which may be subjective. This

research showed the importance of clustering algorithms and suggests that they can be used

to detect inconsistencies in clusters generated from natural language requirements. It also

shows that similarity can be used to analyze requirements based on some form of

classification (e.g., clusters).

Hunter et al (1995) adapted classical logic (Gries 1993) to create a "quasi-classical logic"

(QC logic). This was used to represent partial specifications as a "Viewpoints framework"

and detect logical inconsistency. Theorem proving was proposed as a framework for

www.manaraa.com

13

reasoning about logical inconsistencies represented in QC logic. Using a case study of an

order processing system for a wine warehouse, the authors manually translated the

requirements document into QC logic. The authors reasoned about certain scenarios using

the QC logic and made inconsistency inferences that were related back to the requirements

document. Among some of the inferences was that there was some inconsistency in issuing

warehouse request was probably caused by the conflicting rules laid down by the Logistics

Manager and the Chief Wine Taster. The inference was made in a rule that states that "If

there is an inconsistency in the specification data, the likely source of the inconsistency is a

conflict between two development participants". This research is important because it shows

how classical logic from the field of mathematics can be used in the detection of logical

inconsistencies caused by conflicts in the field of requirements engineering.

Zowghi (2001) investigated the detection of logical inconsistency in natural language

requirements using a similar approach as Hunter (1995). The process of detecting logical

inconsistencies consists of parsing natural language requirements using a parser named CICO

(Gervasi 2000) that produces a parse tree. This tree is a hierarchical tree structure (consisting

of nodes and branches) that shows the relationship between the words and their parts of

speech. The resulting parse tree is translated into predicate logic (i.e., a formal model) and

submitted to a system called Computer-Assisted Requirements Evolution Toolset (CARET).

CARET takes the predicate logic as an input and checks for logical inconsistency using

different scenarios and a theorem prover. This method is significant because it utilizes an

automated theorem-proving framework for detecting logical inconsistencies through the

translation of natural language requirements. They suggested an expressive form of logic that

www.manaraa.com

14

could capture complex requirements as an extension to their work, indicating that additional

views may be needed that are not supported by a logical model.

Genero (2003; 2002; 2000) investigated the application of metrics to ER models. Genero

(2003) used metrics in defining and validating a conceptual model. The ER model was used

as a conceptual model. In an empirical study, participants detected similarities between ER

models in a certain amount of time. This was used as an understandability attribute of

quality. In order to measure the modifiability, the participants evaluated two ER models to

determine if they had the same conceptual meaning. The metrics used in correlating the

response times include the number of entities, number of binary relationships and others.

These types of metrics can be considered as base metrics. The results show high correlation

between the metrics and selected quality attributes. This research is important because it

provides a probable set of base metrics that could be used to analyze an ER model (Jones

2000) and a correlation method for validating metrics.

A metrics system built on similar base metrics was used to detect the level of quality in an

Extended Entity Relationship (EER) (Cherfi 2002). Metrics were derived for assessing the

quality of EER Model or UML class diagrams. Using base metrics, composite metrics were

derived to measure attributes such as, legibility, expressiveness, and simplicity. For example,

measuring legibility was based on the number of inheritance links and the number of line-

crossings (i.e., base metrics) in a model. One limitation of these metrics is that, they are used

to measure quality (Wilson 1996) as opposed to inconsistency and rely on specialized

relationships through the concept of inheritance.

www.manaraa.com

15

Lorenz (1973), a Nobel laureate discussed concepts of evolution in relation to similarity of

forms. He notes that as evolution occurs, two forms that exist in life may take similar paths in

parallel for the purposes of adapting to their environment. This may be related to the concept

of conflict, if the two forms existing in life are so similar they compete for the same

resources. Lorenz states, "The improbability of coincidental similarity is proportional to the

number of independent traits of similarity and is, for n such characters, equal to 2 n'u\ For

example, Lorenz mentions that an airplane, torpedo and shark amongst other forms bear a

notable resemblance because of they need to reduce friction in order to function in their

environment. A similar line of reasoning can be extended to software requirements

specifications, if two functional requirement statement existing a document are competing for

the same section of code to be implemented, this may lead to conflict. The concept of

similarity can be viewed as an analogy that can be used to reason about inconsistencies in

functional software requirements.

Tverksy's (1977) similarity model consists of a feature-based set for similarity measure. It is

predicated on the assumption that a similarity measure between two or more objects is

proportional to the number of common features. The common and distinct features are

modeled as set operations on the features of the objects in comparison. Tver sky gives

numerous examples to demonstrate the measure. In one example, the letter "E" is more

similar to "F" then "I" based on the more common features. In the same way, the letter "I" is

more similar to "F" than "E" based on distinct features. Tver sky suggests that although

people assume that classifications are determined by similarity, "The similarity of objects is

modified by the manner in which they are classified; it serves as a basis of classification of

www.manaraa.com

16

objects, but it is also influenced by the adopted classification." This statement implies that

though we proposed the use of the similarity measure to classifying objects, there is an

unconscious effort when a specific classification method is adopted which will in turn

influence the measure of similarity. It is important to state at this juncture, that there are other

possible measures of similarity, but Tversky's measure was used for this study because of its

transferability to the requirements context and its basis in set theory based representation.

www.manaraa.com

17

Chapter 3 Research Objectives

Tversky's similarity measure is central to this research because it was used by Rodriguez et

al (2003) to determine the similarity between ontologies using entity classes. For example,

two different ontological representations of the word "stadium" are compared with one

another based on their respective hierarchical set definitions. The entity class for "stadium"

represented an ontology containing elements such as possible names, descriptions, super

class definitions, sub class definitions, parts (i.e. objects), functions and attributes. This

research provides some indication that Tversky's similarity measure could be useful in

exploring structural overlap between pairs of ER Models (which are similar to entity classes).

A limited ontology for ER Models would consist of cardinalities, entities, relationships and

attributes.

Support for pairwise comparison of requirements is based on the approaches described by

Hausmann (2002) and Robinson (1999) where requirements or structures were compared

pairwise. This approach simplifies the analysis by considering conflicts between each pair of

requirements. The role of overlap is important for detecting conflicts as seen in Nuseibeh

(2001) and Spanoudakis et al (1997; 1999) where the condition for the existence of an

inconsistency depends on an overlap. In this research, we consider structural overlap between

a pair of requirements. Hunter et al (1995) states that "If there is an inconsistency in the

specification data, the likely source of the inconsistency is a conflict between two

development participants." This statement implies that based on structural overlap, a possible

conflict can be detected via the measure of potential structural inconsistency between a pair

www.manaraa.com

18

of functional software requirements.

The need to transform natural language statements into a form suitable for analysis has been

recognized by Hunter (1995) and Zowghi (2001). They transformed functional software

requirements into logical statements and then analyzed the statements via a theorem prover to

identify logical inconsistencies. This suggests that the type of inconsistency detected is

closely related to the form of representation. Similarly, if we transform requirements into a

structural form, then one would expect to see possible "structural inconsistencies." A

structure is defined by a set of related elements.

A structural inconsistency can be defined as a condition in which "one or more elements of

two structures disagree with each other " while a conflict can be defined as "a state in which

two or more requirements statements cannot co-exist together.'''' A disagreement may exist if

there is an overlap between two structures. This may occur because the two structures share

elements that should not appear in both sets or the relationship between elements is defined

differently in the two structures. Overlap (i.e., similarity) between two structures can be

defined as the set of common elements found in both structures. Previous research has shown

that the existence of an overlap is a precondition for detecting inconsistency in functional

software requirements (Nuseibeh 2001; Spanoudakis 1997, 1999). If we use similarity (i.e.,

the relatedness between structures taking into account common and unique elements to both

structures) as a measure of overlap between structures, then the amount of structural overlap

for a set of functional software requirements can be determined.

www.manaraa.com

19

3.1 Primary Research Question

When does structural overlap indicate that a conflict is likely for a pair of functional software

requirement statements?

3.2 Research Proposition

When a high numeric value of potential structural inconsistency is observed for a pair of

functional software requirements, then a conflict is likely.

3.3 Inferences

When a potential structural inconsistency value is high for a pair of requirements, this

indicates that a conflict is likely and there is also a high degree of structural overlap

associated with some redundancy. The numeric value for a pair of requirements is assumed

to be high irrespective of whether the value is above or under a threshold value. If the pair of

requirements is revised in such a way that the potential structural inconsistency value is

significantly reduced, then the conflict should be resolved. Possible revisions would include

elimination of statements, adding elements, or removing elements.

3.4 Verify with test cases

In these test cases, a set of requirement statements R with known conflicts are transformed

into corresponding structural representations. Numeric values of structural overlaps were

computed and the level of potential structural inconsistency for R was determined. If a pair

www.manaraa.com

20

of requirement statements having a known conflict exhibits a high level of potential

structural inconsistency, then the embedded conflict will have been successfully predicted

and the proposition would have some support. If known conflicts exhibit low values for the

metric, then potential structural inconsistency would be a poor indicator of conflicts.

3.4.1 Conditions

Multiple sets of requirement statements were used from different case studies used in

previous research (Flowers 1996; Lewerentz et al 1995; Neufville 1994).

3.4.2 Expected Results

The author expects that a high level of potential structural inconsistency indicates conflict to

some acceptable degree and that different case studies can be used to show this.

www.manaraa.com

21

Chapter 4 Terminology

4.1 Notation

The following notations are used in subsequent sections.

R : a set of requirement statements in a natural language

R : an abstraction of R in a controlled language

r: : requirement statement i

II : Entity Relationship Model set

nt : the entity relationship model for requirement i

s : an entity in nt

a : an attribute for an entity

c : the value in terms of number of entity instances in a relationship

co: a relationship between two entities

v. cardinality for an entity in a relationship

^{71^71 j) : the potential structural inconsistency for nt and rc]

www.manaraa.com

22

Q>k(tt,,^j): set operation on /r, and nj

4.2 Definitions

4.2.1 Attribute

An attribute is the property that describes of gives more information about an Entity. An

attribute set for Entity type i is represented by A/= {an, <%, •••> <%}•

4.2.2 Cardinality

The cardinality indicates the number of entities participating in a relationship. It is a three-

tuple, Vk = (c, £•„ ûj) consisting of a value (in terms of number of instances), an entity, and

one relationship.

4.2.3 Modified Controlled Language Lexicon

The controlled language, ACEMA CL (AECMA 2004), was modified to create a lexicon

having only one possible part of speech for each word. This was done to simplify the

transformation process. Let R'(0 be a representation of R(f) based on the modified CL

lexicon.

4.2.4 Entity Relationship Model for a Requirement

The entity relationship model is the structure being used in this research. It is a conceptual

model described by entities, relationships, attributes and cardinalities.. An ER model for

requirement statement i , is defined as a three-tuple, 7r, (E,Q,N). The entity set E = {e\, Sz, £3,

www.manaraa.com

23

...,£„}, represents objects in the system. For each entity e„ there is a set A,—{an, an, <2, 3 , . . . ,

(Zip} of attributes that describe the entity. Relationships between entities in E are defined by

Q - {coi, (o 2, (o 3, ..., a>m}, a pairwise set of relationships where, m <
fn \

<2y
. The cardinality

set N = {vi, v 2, v 3 , . . . , v 2m}, defines the number of instances for each entity in a

relationship.

4.2.5 Entity

An entity £,, is an object that is involved in some task or action. The entity set E = {s\, £3,

represents all entities in a statement

4.2.6 Functional Software Requirements

A collection of statements in natural language that specify what the software must do in order

to satisfy customer requirements is given by

R = {r,, r2, r3,..., r„}.

4.2.7 Part Of Speech (POS)

The complete part of speech list can be found in the Appendix A. The POS reflects the role

of a word in the statement. The basic types are article, noun and verb (i.e. ART, N and V

respectively). Appendix A shows the Penn Treebank tag set used in this research. When a

statement is parsed by the Stanford parser, the tags of each word in the statement are actually

from the Penn Treebank tag set.

www.manaraa.com

24

4.2.8 Parse Tree

A parse tree describes the structural relationship for the POS set in a requirement statement.

The tree is a hierarchical display of nodes consisting of parent and leaf nodes. The Stanford

parser produces the parse tree from a statement.

4.2.9 Parent Node

A parent node is a node in the parse tree that is either a statement or a phrase. A phrase may

either contain other parent nodes or leaf nodes. A sample of parent nodes are given in Table

1. A detailed description can be found in Appendix A.

Table 1 Parse Tree Parent Nodes

Parent Node Designation
Statement S
Noun phrase NP
Verb phrase VP
Prepositional phrase PP
Adjectival phrase ADJP
Adverbial phrase AD VP

4.2.10 Leaf Node

Leaf nodes are nodes at the lowest level in the parse tree. They have no child nodes. A leaf

node represents a POS for each one word in the requirement statement.

4.2.11 Phrases

When a statement is incomplete it is a phrase. Based on the POS, we can have different types

www.manaraa.com

25

of phrases as shown in Table 1.

4.2.12 Potential Structural Inconsistency

An inconsistency is defined as "If a reason, idea, opinion, etc. is inconsistent, different parts

of it do not agree or it does not agree with something else''' [Cambridge online dictionary].

We define a potential structural inconsistency between /r, and n} as Y (%-,,%%) . This

represents the possibility that elements of structures do not agree with each other

4.2.13 Relationship

A relationship cok, is some form of association between two or more entities. The relationship

set for ni is defined by Q = {cûj, co 2, co 3, ..., co m}. If there are no relationships between

entities, then this would be a null set.

4.2.14 Total Elements

0% (tt, u nJ) is the set of all elements of type K (e.g., entities, attributes, relationships)

present in ni and nv.

4.2.15 Common Elements

Ok (tt, n jtj) is the set of all elements of type K (e.g., entities, attributes, relationships)

common to both Kj and Tt j.

www.manaraa.com

26

Chapter 5 Research Methodology

5.1 Methodology Overview

The main components of the research methodology include:

1. Derivation of the inconsistency metric, vf(^, , jtj)

2. Selection of suitable datasets for requirements based on known case studies

3. Comparison of the results for xv{nt, n}) and known inconsistencies in the datasets

4. Comparison with Predicate Logic; provide some lightweight validation for

inconsistency detected

Y i s d e r i v e d f r o m R (i . e . , t h e s e t o f r e q u i r e m e n t s) b a s e d o n T v e r s k y ' s m e a s u r e o f

similarity with normalization. The datasets for the requirement statements are taken from

four existing software system development case studies. Each dataset is then analyzed and

the value of) for each pair of requirements is determined. Based on known

conflicts in the datasets, a comparison is made between the existence of conflicts

and . These results are compared with the predicate logic approach used in

previous research to evaluate the similarities and differences in detecting conflict.

5.2 Derivation of Y(%r,, k]) from (r,,)

The major steps in finding f J are as follows.

www.manaraa.com

27

1. Manually rewrite each r, as r\ based on the modified CL lexicon (see section 4.2.3).

Words that do not exist in the CL are replaced by looking for words with similar

meaning. The meaning of the word within the context of the statement is also taken

into account when selecting the replacement word. It is possible that a conflict could

be artificially introduced due to this replacement.

2. Parse r/ using the Stanford Parser (Klein 2003) to produce a parse tree.

3. Manually modify the parse tree by checking the POS for each leaf node in the tree

versus the modified CL lexicon. If the POS does not agree with the lexicon, then the

POS is replaced with the one in the lexicon and the parse tree structure is modified if

. necessary.

4. Transform the modified parse tree into nt, the Entity Relationship Model (ER

Model) using Chen's rules.

5. Calculate vp(^r,,^y) from n t and nr

5.2.1 Transform r, into r,'

Natural language is ambiguous because words used in natural language can have different

meanings in different contexts resulting in multiple possible parts of speech. The parts of

speech are one component of determining the semantics of a statement. For example,

consider the word "state" used as follows.

www.manaraa.com

28

1. The man states that the project will take a long time.

2. The states claim that the project will take a long time.

In the first statement the word "state" is a verb while in the second statement it functions as a

noun. Identifying the different parts of speech in each statement is relatively easy for

someone who knows the language. However, using an algorithm that relies on word sense

disambiguation rules is a non-trivial problem (Kamsties 2001) beyond the scope of this

research.

In order to overcome the problem of ambiguity in natural language, a Controlled Language

(CL) is used. A CL is a subset of the English language containing a smaller lexicon (i.e., set

of words). The CL used is the Aircraft European Contractors Manufacturers Association

(AECMA) Simplified English (SE). AECMA was selected over other CLs (such as,

Attempto Controlled English ACE, Processable English PENG, and Caterpillar Fundamental

English (CFE)) because it has been in existence for quite some time and is readily accessible.

AECMA SE has been used for the specification of aircraft maintenance manuals in order to

improve the readability for aircraft maintenance workers. In a similar manner, by specifying

the functional software requirements in a CL, ambiguity in the language is reduced,

simplifying the process of producing a parse tree. The AECMA SE consists of a limited

lexicon of 956 words including nouns, verbs, adjectives, and prepositions. Some words in the

lexicon have more than one possible POS. This lexicon was modified by reducing the

possible parts of speech for each word to one. This provided a unique POS for each word.

www.manaraa.com

29

Each requirement statement, ri, is rewritten as r' using the modified CL lexicon.

5.2.2 Parsing r/ using the Stanford Parser

The Stanford parser was used to produce a parse tree for each r/. Suppose, we have the

following requirement statement from a simple case of developing a web based system that

monitors Internet traffic.

The system monitors the traffic.

The POS tags from the modified CL lexicon for each word are shown in the Table 2. The

combination of each word and its POS tag are the leaf nodes for the parse tree.

Table 2 POS tags for the example

Word POS tag Meaning
The DT Determiner

system N Noun
monitors V Verb

the DT Determiner
traffic N Noun

If all the words in a statement is tagged then it is verified as being wholly contained in the

CL. The CL statements help to reduce the possibility of ambiguity. The Stanford parser

produces a parse tree using the Penn Tree Bank tags none-the-less if the CL parts of speech

help to ensure consistency. The Stanford parser uses a set of grammar rules that contain

relationships between the phrases and the POS tag.

www.manaraa.com

30

The final parser output using the Stanford parser is shown in Figure 1.

The/DT system/N

monitors/V

the/DT traffic/N

Figure 1 : Parser Output

5.2.3 Modify the Parse Tree Using the Modified CL Lexicon

The parse tree is based on a different lexicon (i.e., the Penn Tree Bank tagset). Therefore, the

resulting POS tags in the tree may not be consistent with the modified CL lexicon. The leaf

nodes in the tree are manually compared with entries in the modified CL lexicon. If they do

not agree, then the POS tag from the modified CL lexicon is substituted into the tree. In

some cases, this may change the nature of the parent nodes and then the tree is manually re

structured.

5.2.4 Transform the modified parse tree into ni

Chen (1983) studied the relationship between the parts of speech in English sentences and the

associated ER Model. Following the general guidelines for creating ER Models proposed by

www.manaraa.com

31

Chen, the parse tree nodes were transformed into an ER Model, . The following rules

proposed by Chen were used.

Rule 1: If the word is a common noun (e.g., "person", "Chair"), then add sk (corresponding

to the noun) to E if ek does not already exist.

Rule 2: If the word is a transitive verb (or verb phrase), then add cok (corresponding to the

verb) to £2. The following example is given by Chen.

A person may own a car and may belong to a political party.

The transitive verbs, "own" and "belong to", are relationships between (person, car) and

(person, party), respectively.

Rule 3: If the word is an adjective, then add aik (corresponding to the adjective) to A, for

entity er

Rule 4: If the word is an adverb, then it is considered to be a modifier of a verb phrase

corresponds to an attribute of a relationship in an ER Diagram. The author of this research

assumes that this attribute is part of a verb phrase as such a relationship.

Rule 5: If a parent node has the form "The X of Y is Z" and if Z is a proper noun (i.e., a

specific instance of a noun), then treat X as a relationship between Y and Z and add cok

(corresponding to X) to £2. In this case both Y and Z represent entities.

www.manaraa.com

32

Rule 6: If a parent node has the form "The X of Y is Z" and if Z is not a proper noun, then

treat X as an attribute of Y. In this case Y, represents an entity (or group of entities) while Z

represents a value. Chen gives the following statement as an example.

The color of the desk is blue.

Rule 7: If a clause is a high-level entities then it is abstracted from a group of interconnected

low-level entities and relationships.

Rule 8: A sentence corresponds to one or more entities connected by a relationship, in which

each entity can be decomposed (recursively) into low-level entities connected by

relationships.

Based on the POS tags, the corresponding ER model components are shown in Table 3.

Table 3 ER Model Components

POS Tag ER Model Component
N e
V co

ADJ a
ADV CO
DT V

To define the sets associated with nt (i.e., E, A, Q, N), the tree is traversed depth-first, from

left to right and the components of the ER Model are identified based on the rules.

The general guidelines for extraction are as follows.

www.manaraa.com

33

Entity Extraction: Traverse the parse tree from left to right until a noun leaf node is

encountered. The first noun leaf node encountered is "system/N" with the parent node "NP".

Based on Rule 1 we can add "system" to entity set E. In a similar manner we can add

"traffic" to the entity set E. In the general case, we can traverse the parse tree from left to

right until we find "NP" parent nodes then we look for "N" child nodes , add corresponding

words to the entity set until we reach the end of the statement.

Relationship Extraction: Traverse the parse tree from left to right until a verb or adverb is

encountered. The first verb encountered is "monitors/V" with a parent node "VP". Based on

Rule 1, we can add "monitors" to the relationship set but in order to do that we require two

entities. The two entities can be obtained by finding the noun leaf nodes of neighboring NP

parent nodes to VP. In this example, "system" and "traffic" are selected and then the

relationship is added to the relationship set Q. In the general case, we can traverse the parse

tree from left to right until we find "VP" parent nodes then we look for "V" and "RB" (i.e.

from the Penn Tree Bank Tagset) child nodes, add corresponding words to the relationship

set until we reach the end of the statement.

Attribute Extraction: Traverse the parse tree from left to right and search for neighboring

leaf nodes that qualify noun leafs (i.e. providing more information about noun leafs). The

search will typical stop for a noun leaf node once a relationship or the end of the statement is

encountered.

Cardinality Extraction: Find the noun leaf nodes and look for another leaf node having the

same parent node NP and a part of a "Determiner" as its POS. This step was omitted in the

www.manaraa.com

34

research because the use of cardinality introduced a greater complexity in the research and

other metric concerns as such it is not used in the similarity analysis.

Using the extraction guidelines for extracting ER model components, we can produce ni for

the example as shown in Figure 2.

monitors

Traffic System

Figure 2: ER Model

The corresponding set members are shown below. These sets represent the structural form of

the functional software requirement statement.

E = {system, traffic}

Q = {monitors (system, traffic)}

A = {null}

N = {the, the}

5.2.5 Inconsistency metric Y)

The research proposition states that if is high, then a conflict is likely to exist

www.manaraa.com

35

between r, and rt. vF(^1,^r7) represents the possibility that elements of two structures do

not agree with each other. A set-based similarity measure between two structures can be used

to assess the overlapping elements between the structures.

Two measures of similarity were considered, namely, Tversky's measure of similarity

(Tversky 1977) and Edit Distances (Ristad 1998). Edit distances is used in genetics research.

Tversky's measure of similarity was used because of the set based representation and that

was developed irrespective of the field of research (i.e. genetics), essentially both measures

are different. Tversky's measure of similarity measure is also readily adaptable to the

enumeration of common and unique elements. Rodriquez (2003) used Tversky's measure of

similarity in finding semantic similarity among entity classes. Tversky's measure applied to

entity classes provides a good starting point for measuring similarity in ER Models.

Given two ER models, /r, and 7tj, we can perform set operations on elements of ki and ttj to

determine which elements the models have in common and which ones are different.

0^ (tt, u nJ) is the set of all elements of set type K (e.g., entities, attributes, or

relationships) and 0% (%", n 71,) is the set of common elements of set type K. We can define

those elements found in % but not in jjj as (%", - Jtj) = (tt, U n^)-<bK). Similarly

for Ttj we obtain0^ {ky -ni) = <S?K(;r,. U7T j) -0 K (7r i) . Using the elements from sets E, R,

and A, we can obtain the cardinality of the sets based on equal weights for the three sets

giving us,

www.manaraa.com

36

p{n, (*", n1 + \®R (*, n"j] +K ^Xj] > •
f(w, -^)=| <Dg (tt, - tf,) | +1$« k -^)l+1^ -îtj)\ and

f(tVj - a t)= | Og -^)| + |O f i k -tt i)\+\Oa {tïj -n) |.

We can then define the similarity of /r,- and as the difference between the number of

common elements and those elements that are not in common, giving us

Sk,) = 7 , F (t t , n ^ .) - z 2 F (^ r , - T T ,) - z 3 F

where, 71,72 and 73 > 0, are assignable weights assumed to be 71=72-73 =1- The weights are

used to assign importance to each function depending on the context of similarity. To

normalize S (n,, 7ry) between 0 and 1, it is necessary to determine the upper and lower

bounds of S (#,, n j) . The upper bound corresponds to min (| n t |, | n} |) , which would be the

largest number of elements that x, and 75 could have in common. Likewise, the lower bound

corresponds to -(j | + | n j |) representing the condition when all elements are different.

The normalized similarity , is given by

(^ t.- u J VIV,, itj J= 1—n—1'\ Mi 1 I i\\ ' w h l c h educes to
m m kl 'h i r i -k l + Fy|JJ

(s 5(^,^)+|^.| + |^.|
' kj r . /i 11 i'\ I » I I •

min^,.|,|^; J+|^| + kv |

www.manaraa.com

37

5.3 Selection of suitable datasets for requirements based on known case

studies

Four case studies were selected to produce four separate datasets. Some case studies were

selected with a small set of requirement statements in order to show the basic application of

the methodology. For example, the first test case had 3 requirements. The second test case

had 5 requirements and had been studied previously by two researchers. This test case

involved a project with known conflicts and inconsistencies that had been previously

analyzed using logical methods. Other case studies were considered either because the

nature of the known conflict is apparent, there were known problems in the software, or the

model size was limited in scope. The small number of statements is important because

natural language can be difficult to analyze on a large scale. Therefore, a limited number of

statements were used to confirm the author's proposition.

5.4 Comparison of the results for Y(#, ,%%) and known inconsistencies

in the datasets

By comparing the results for with known inconsistencies in the datasets, the

reliability of the metric can be assessed. This comparison will indicate whether different

inconsistencies exist in the document and provide a better understanding of the nature of the

underlying conflict(s).

www.manaraa.com

38

5.5 Comparison with Predicate Logic

Predicate logic was also used to detect inconsistencies in the datasets from the test cases..

The use of predicate logic helps to clarify the different types of inconsistency detected in the

case studies (i.e., any differences between logical and structural inconsistency). This

approach was used because previous researchers have used this method to identify known

inconsistencies and conflict from a logical view. These results were compared with those

obtained for i,Kj) to determine if there are differences. Another reason for using

predicate logic is that predicate logic has been an accepted method for detecting

inconsistency.

www.manaraa.com

39

Chapter 6 Test Cases

In all, 4 test cases (i.e. containing a total number of 41 statements) are presented covering

multiple software system domains. The studies include the controlling a pump, an automated

dispatch system, robots in a factory, and an airport baggage scheduling system. These studies

all have some degree of dependency between objects in their respective systems.

Dependency is important because the proposed metric uses similarity analysis as such some

degree of dependency is required.

In brief, the Sump Pump test case has a relative small requirement set of 3 statements. The

next case of the London Ambulance Service has 5 statements. The Production Cell test case

has 8 statements while the DIA Airport test case has 25 statements. The case studies address

control scenarios having different levels of complexity. Sump Pump

6.1.1 Description

The Sump Pump test case is a modified pump example from (Hooman 1995; Chechik 2001)

that contains 3 statements in all. Though a relatively small data set, it provides a good entry

point for detecting inconsistencies (i.e., if ,nj) is not successful for this study, then it

is likely a poor metric). This system also shows the core concept of validation in terms of

known system concerns that are conflicts. This takes the form of providing a set of ideal

requirements R* for analysis. R* is assumed to be true when we have a system that is

predefined based on well known implementation. Such systems have standard requirements

that have been successfully applied several times. Given R*, we generate an acceptable

www.manaraa.com

40

conflict in the system and introduce R (i.e., requirement statement) that produces a conflict.

A diagram of the Sump Pump System is given in Figure 7.

Sump

When fluid in the system reaches the level associated with a discrete sensor, the change in

signal is detected by the Controller. Based on the control logic, the Controller can turn the

power for the sump pump on or off.

6.2 London Ambulance Service (LAS)

6.2.1 Description

The London Ambulance Service (LAS) has been used in requirements engineering because

of its known inconsistencies (Flowers 1996; Hunter 1995; Zowghi 2001; Sanni 2005). When

the LAS system was deployed on October 26, 1992, it suffered from many problems. For

example, the Automatic Vehicle Locating System (AVLS) could not track the location and

Sense
High Level

Low Level

Basin Signal

Signal
Controller

Figure 3: Sump Pump System

www.manaraa.com

41

status of some of the dispatch units resulting in the assignment of multiple vehicles to the

same incidents (Finkelstein 1996). A fatal incident occurred when an ambulance failed to

arrive at its destination on time. At times, the volume of calls and messages overwhelmed the

system. After a series of serious problems, the system was shut down and terminated.

Finkelstein (1996) found that some areas were not fully defined in the Software

Requirements Specifications (SRS). A subset of the original functional software

requirements for the LAS is given in Table 2 in Appendix B.

6.3 Production Cell at Karlsruhe

6.3.1 Description

A set of requirements (see Table 3 in Appendix B) are given for an existing/theoretical

production cell (Lewerentz 1995). This set of requirements is tested based on the safety

concerns and possible conflicts as discussed in the paper.

The author assumes that the CL is representative of the original natural language

requirements. A pictorial representation of the system is shown in Figure 4. The words in the

diagram are based on the modified CL lexicon. The original words are shown in

parentheses.

www.manaraa.com

42

Metal
(Plate)

First
Track
(Feed
Belt)

'

Engine
(Crane)

System'
(Robot) First Hand Second Hand

Top
(Table)

Machine
(Press)

i i

Second
Track

(Deposit
Belt)

Figure 4: Production Cell System

6.4 Denver International Airport Automated Baggage Handling System

(ABHS)

6.4.1 Description

Using similar principles in the general field of investigation such as accident reconstruction,

the ABHS requirements were reconstructed by using a collection of information available in

the literature and on the web. The ABHS is a complex software system that communicates

with a number of baggage handling related devices in the airport (03.25.05 DIA Description).

The system experienced numerous problems when it was implemented. The control software

played a significant role in these problems. The actual requirements were not available.

Therefore, in order to develop the requirements, the nouns in the DIA Description were used

www.manaraa.com

43

as a basis for building the functional software requirements for the system.

www.manaraa.com

44

Chapter 7 Results

7.1 Sump Pump

The following pair of requirement statements are assumed to form an ideal requirement set,

R*, for the controller and is given by,

R* = {r„r2}

where,

r i ; When the f lu id level reaches the high threshold , then turn the pump on

r2: When the fluid level reaches the low threshold, then turn the pump off.

Suppose we introduce a third statement that generates a known conflict of assigning multiple

fluid levels to the action of turning the pump off. This conflict as described previously is a

known class of conflict. We now have the following requirement set,

where,

ry. When the fluid level is between low and high then the pump is off.

The parse trees for the three requirements are shown in Figures 5 through 7.

www.manaraa.com

45

NP

ZX
DT NN VBZ

VP

ADJP

The level is JJ RB

high then NP VP

/X /\
DT NN VBZ ADJP

the pump is JJ

on

Figure 5: Requirement #1 Parse Tree

NP VP

DT NN VBZ ADJP

The level is JJ RB

I I
low then

NP VP

DT NN VBZ ADJP

I I I I
the pump is JJ

I
off

Figure 6: Requirement #2 Parse Tree

www.manaraa.com

46

NP VP

/\ ^—^7

DT NN VBZ PP

The level is IN

NP VP

/\ /\
DT NN VBZ ADJP

ADVP the pump is JJ

RB off ADJP

i i
between JJ CC JJ then

high and low

Figure 7: Requirement #3 Parse Tree

By applying Chen's transformation rules, the ER Models in Figures 8 to 10 were produced.

Level Pump

High on High on

Figure 8: Requirement #1 ER Model

www.manaraa.com

47

then

Level

Low

Pump

Off

Figure 9: Requirement #2 ER Model

then

Pump

Off Between High and Low

Level

Figure 10: Requirement #3 ER Model

Vp 1̂ - ̂ j
The following calculations describe how v " 1 ' was determined for requirements 1 and

2.

1 (% i f l n 2) \ = | { l e v e l , p u m p } |

I Oi A 2̂)1 = \ {then}\

10^ Oi A ni)\ = | {(/)} |

F(tt, n ; r 2) = 2 + l + 0 = 3

www.manaraa.com

48

F (* i -Xi)= 2

F { T Z 2 - K X) = 2

S (tti , 7Vi) = 3 — 2 — 2 = - 1

min {\n\\,\n2\) = \n2\ = 5

(N + \tt2\) =5 + 5 = 10

^ j
The value for v " il can be calculated in a similar manner for each possible

combination of requirements as shown in the table below

Table 4 Sump Pump '71J ^ Level

Pair

n,r2 0.8
r\,r2 0.6
n, r\ 0.6

For this system, it is well known that r\ and r2 are not in conflict. This suggests that a value

of 0.6 for j) is not sufficient to indicate a conflict. The value of VP(^3,^2)

indicates a potential conflict between r$ and r2. This can be attributed to similar actions of

www.manaraa.com

49

turning the pump off. vP(^3,^rl) does not show a conflict. This is because r-$ describes how

the pump enters the off state while r, describes how the pump enters the on state.

7.1.1 Sump Pump Predicate Logic Comparison

Based on R, we can reason using predicate logic as follows.

A = When the level reaches the high threshold

B = the pump is on

C = When the level reaches the low threshold

D = the pump is off

E = When the level is between low and high

R can be stated as a set of logic statements, {A => B, C => D, E => D}. Given these logic

statements, we can deduce that C A E => D. Submitting these statements to a theorem prover

using Zowghi's approach (i.e., based on negation) will not return a logical inconsistency.

This is true because the methodology relies heavily upon negation in detecting an

inconsistency.

Alternatively, the conflict can be explained using partial sets, as follows.

• When fluid levels are high (fluid levels => high)

• When fluid levels are low (fluid levels => low)

www.manaraa.com

50

• When some fluid levels are high and some fluid levels are low

(some fluid levels => high A some levels => low)

• Pump is off (pump => off)

• Pump is on (pump => on)

• When fluid levels are low then the pump is off

(fluid levels => low => pump => off)

• When some fluid levels are high and some fluid levels are low then the pump is off

(some levels => high A some levels=> low) => (pump =>off)

This is equivalent to C A E => D.

The conflict occurs when some fluid levels shut the pump off irrespective of if they are high

or low levels. The set of levels contains both high and low (i.e. structurally overlapping

requirements), when ideally it should contain high or low (i.e. distinct requirements). Thus,

we find the same state generating the same action (i.e., the pump being switched off) when it

should be a single state (i.e. as opposed to partial states).

Hausmann (2002) also used a similar technique in detecting conflict in use case diagrams.

When he gave an example of a conflict between two use case transformations of "pay bill"

www.manaraa.com

51

and "settle bill", both transformations produce the result of removing the relationship "owns"

between the goods and the shop (i.e., they overlap in items that are deleted). In effect, they

cancel each other out, creating some form of disagreement. Hausmann's rule can be restated

as "If two transformations disable one another, they cannot be part of the same

transformation sequence". This is also part of the same class of conflict in terms of "Two

life-forms competing for the same limited resource." Ideally they are in conflict and they

cannot co-exist in the same space. The author believes this concept to be also true of

functional requirement statements.

7.2 London Ambulance Service (LAS)

vp (?r 71)
For requirements IRC.2 and OM.l v " J ' was found as follows.

I {n\ f| n2)| = I {operator, call, ambulance} |

1 (/ r i f] % z) | = I {receives,should dispatch} |

I (n\ fl 7ti)\ - I {phone,nearest,available) \

F{nx r\it2) = 3 + 2 + 3 = 8

f{x\ -7T2) = 3

F{k2 - nx) = 0

S (tt1, 7ti) —8—3 — 0 — 5

www.manaraa.com

min(|%i|, |%2|) = |%2| = 8

(|^i| + \n2\) = 11 + 8 = 19

- ffrl^89

The results for all pairings are shown in Table 5.

Table 5: LAS level

IRC.2|OM.l 0.89
OM.l OM.2 0.8
IRC.3 OM.l 0.77
IRC.3|OM.2 0.75
IRC.2|IRC.3 0.75
IRC.2|OM.2 0.72
IRC.l IRC.2 0.29
IRC.1|IRC.3 0.25
IRC.1IOM.1 0
IRC.l|OM.2 0

Values for ,ns) as low as 0.72 indicate potential conflicts in the set. For IRC.2|OM.2,

the potential conflict appears to be redundancy. This is also true for the IRC.2|IRC.3 pair

where there is unnecessary in formation in IRC.3 about the ambulance. This suggests that

there may be a threshold value for Y between redundancies and conflicts. Further

research would be necessary to investigate this possible threshold.

The IRC.2|OM.l pair has the highest value, suggesting that this pair of

www.manaraa.com

53

requirements should be reexamined. On closer examination of the two requirements, OM. 1

could be interpreted as an ambulance being dispatched whenever a phone call is received

(e.g., wrong number or information request). This may relate to the known problem of large

call volumes as previously discussed. This also relates to the same class of conflict described

by Lorenz (1973), when two life forms that exist are so similar that they compete for the

same scarce resources. In this case, we have medical and non-medical related emergency

calls competing for the same resource (i.e., the call center).

Another interesting observation is that those pairs with IRC.l consistently have the lowest

values. Therefore, this implies that IRC.l is the requirement with the least conflicts because

its pairings with other requirements has consistently low) values.

Based on the results thus far, when a structural inconsistency exists, requirements may tend

to overlap more than necessary. It appears that when requirement pairs have a

Yvalue near 0.8, then these requirements should be reexamined and revised

because a conflict may exist.

7.2.1 London Ambulance Service Predicate Logic Comparison

Since this test case is taken from Zowghi et al (2001), we make a comparison based on our

method and their predicate logic method. They reported a logical inconsistency for

IRC.3|OM.l. This pair can be found in Table 4 and has a value of 0.77 for Y(%-, ,%%) . This

suggests a threshold value of 0.77 for Y, but this may be context dependent and

warrants further research. Zowghi et al did not address the IRC.2 and OM.l pair in their

www.manaraa.com

54

analysis. This confirms two assumptions made earlier that the logic method checks for the

existence of logical inconsistency while the proposed methodology can potentially measure

the degree of conflict based on the potential structural inconsistency.

7.3 Production Cell at Karlsruhe

Table 6 shows the results for the requirements set for ,n}) values greater than 0.5. All

values can be found in Appendix B.

Table 6: Production Cell n}) levels

r, fj w f a t t c j)

R003 R006 0.8
R006 R008 0.79
R003 R008 0.64
R001 R007 0.6

The pair of statements R003 and R006 has the highest value of inconsistency and (R006 ,

R008 pair is also very close to this value. We can view this in terms of the first and second

hand on the robot retrieving the metal from the same location or an unknown location. We

know that the first hand of the robot gets the metal from the top. The second hand gets the

metal from the open machine. Specification of the requirement hints at under specification

and vagueness (i.e. ambiguity). This conflict is related to an instance of logical inconsistency

reported by Zowghi (2001) as a pair of tacit requirements. Tacit requirement are the type of

www.manaraa.com

55

requirements that leave designers, developers of systems guessing or assuming and filling in

the blanks.

For R006 and R008, we see that the second hand gets the metal seems to be in conflict with

the engine gets the metal. These two statements are vague and do not clearly state the

location where the "getting" of the metal should occur.

7.3.1 Production Cell Predicate Logic Comparison

The logical comparison is interesting because it not only shows a clear distinction between

both methodologies but shows that in order for the logical statement to be clearly understood

the requirement statements have to undergo some minor revisions. This is important because

the premise of a potential structural inconsistency is that a revision is implied. For this test

case, it appears that when a requirement statement requires a minor revision in order for it to

be adequately represented in predicate logic, then it may contain some potential structural

inconsistency. This can be confirmed from the logical statements as follows.

R001: The first track =* metal moved to the top

R002: The top moves to a good position => removal by the first hand of the system

R003: The first hand of the system => the metal is retrieved

R004: The system turns => the first hand points to the open machine

R005: The machine => the metal is changed A open for the second hand

www.manaraa.com

56

R006: The second hand of the system => the retrieved metal A turns A metal put on

second track

R007: The second track => metal moves to the engine

R008: The engine => the retrieved metal gotA metal put on first track

The production cell is setup so that it can continuously. This implies that each requirement is

connected to the next requirement such that C => B and B => C . This can be assumed true

for R001 through R008. Not withstanding, this additional knowledge based on Zowghi's

approach does not improve the detection of a logical inconsistency for this test case. This

additional information can be used to obtain new logical statements. Now comparing both

methods we have the following.

R003: The first hand of the system => the metal is retrieved

R006: The second hand of the system => the retrieved metal A turns A metal put on

second track

R008: The engine => the retrieved metalA metal put on first track

Based on Zowghi's methodology it is difficult to determine whether an inconsistency exists.

The logical method does not appear applicable in this instance due to its reliance on negation.

www.manaraa.com

57

7.4 Denver International Airport (DIA) Automated Baggage Handling

System (ABHS)

Based on an initial description given by an online project (DIA Description) and Neufville

(1994), the following objects were specified for the system in natural language and controlled

language,

Table 7: DIA CL Objects

NL Objects CL Objects
System System

Network Wire

DCV Container

PLC Computer

Motor Engine

Airplane Airplane

Passenger Person

Baggage Bag

Conveyor Belt Line

Check-in Agent Agent

Sensor Device

Table 8 shows the 'n)> values for requirements pairs where 0.6 The

complete set of values can be found in Appendix B.

www.manaraa.com

58

Table 8 : ABHS k., Jtj) levels

r, rj

R008 R009 0.75

R008 R010 0.75

R009 R010 0.75

R011 R012 0.75

R017 R025 0.75

ROM R020 0.6

R016 R025 0.6

R018 R024 0.6

Upon examination, these pairings do not show any apparent conflict though the R008|R009

pair indicates there may be some ambiguity in the signal being sent to possibly different

devices. The R017|R025 pair shows no conflict or redundancy. This indicates that there may

be missing information in the ER model that would help differentiate these two requirements

[n TV)
and lower the v " 1 ' value. Another possibility is that the semantics of language should

be considered.

7.4.1 DIA Automated Baggage System Predicate Logic Comparison

This comparison shows differences in the methodologies. The requirements in Table 7 can

www.manaraa.com

59

be represented as the following logic statements.

R008: The wire => a signal is transmitted to the device

R009: The wire => a signal is transmitted to the small container

R010: The wire => a signal is transmitted to the large container

ROI 1 : A person => a small bag is owned

R012: A person => a large bag is owned

R017: The system sends an empty container to a bag

R025: The system sends a full container to a person

It appears that when a requirement has to been considerably modified in order to represent it

in logic; an inconsistency can be introduced or it may not be a functional requirement. For

example, a person has a small or large bag may not necessarily be requirement though the

person interacts with the system. This was also the case based on the LAS results where

IRC.l "A medical emergency is either an illness or an accident". Though this requirement

had the lowest PSI, it was a simple classification of a medical emergency. For the ABHS,

ROI 1 and R012 describe the function of a person with respect to the function of the system.

www.manaraa.com

60

Chapter 8 Conclusions

The results of the research show reasonable support for the research proposition that when a

high numeric value of potential structural inconsistency is observed for a pair of functional

software requirements, then a conflict is likely. The new metric for detecting a possible

conflict via potential structural inconsistency uses a normalized Tversky's similarity measure

that can be used to compare pairs of requirements using a range of 0 to 1. The normalization

makes it easier to analyze and reason about the actual similarity values. One issue for further

research is that Y (#,,%%) does not differentiate between a conflict, redundancy, and

ambiguity (i.e. these concepts appear to be interrelated). Additional information (e.g.,

semantics) is necessary to differentiate these characteristics of a requirement statement.

This research has addressed the problem of reasoning about inconsistencies and conflict

using different representations of software requirements specification. It has been shown that

the semi-formal of representation identifies a slightly different set of inconsistencies than

formal methods. A potential advantage of the new metric is that it provides a numeric

indicator for the degree of conflict versus the Boolean indicators for logical inconsistency.

A high value ranging between 0.7 and 0.8 was repeatedly observed in all the four case studies

from different fields. This leads a strong argument for reexamining or revising requirements

around this value. The numeric scaling of the requirements may be useful in the prioritization

of requirements. The numeric characterization of requirements document through the use of

structural metrics, introduces a numerical metric into the detection of conflict that does not

exist in the logical method. The implication of this is that requirement specifications can

www.manaraa.com

61

be prioritized based on numeric value of structural metrics. The need for metric based

prioritization cannot be overstated due to the large volume of information in a requirements

document.

This study provided some insights into the nature of conflict as it relates to the domain of

requirements engineering. One observed characteristic was the "the propagation" of conflict

through software requirement specifications. A conflict can be considered to be an object that

can propagate through the requirements based on the overall structural relationship between

the requirement pairings. This was observed in part through the chaining of requirement

pairings with high levels of PSI in test cases 3 and 4. Some requirements were reoccurring,

forming chains of structural inconsistency. This concept of chained structured pairs of

requirements may show some form of conflict propagation through the requirements

document.

8.1 Future Research

Results from this study indicate that further differentiation of problems with requirements

(e.g., redundancy and ambiguity) may be possible with some revisions to the metric. If

multiple thresholds can be found, then this approach could provide a more accurate

assessment of requirements.

Additional information from the semantics of the statements could be useful in providing

greater differentiation. New methods are needed that can characterize and check the

semantics of pairs of requirement statements.

www.manaraa.com

62

To make this method more suitable for routine use, full automation of the methodology

would be advantageous but would be very difficult to achieve. Several steps currently

require manual intervention due to the complexities of language.

www.manaraa.com

63

References

AECMA simplified English "A Guide for the Preparation of aircraft maintenance
documentation in the international aerospace maintenance language". AECMA 2004

Ambriola, V. and Gervasi, V. "Processing Natural Language Requirements" International
Conference on Automated Software Engineering November 02 - 05,1997

Ambriola, V. and Gervasi, V. "An Environment for Cooperative Construction of
Requirement Bases". Proc. 8th Int. Conf. on Software Engineering Environments, IEEE
Computer Society Press, Los Alamitos, 1997, 124-130

Chechik, M., and J. Gannon, "Automated Analysis of Consistency Between Requirements
and Design," IEEE Transactions on Software Engineering, 27,1 (July 2001), 651-672

Chen P.P., "The Entity-Relationship Model: Toward a Unified View of Data". ACM TODS
1 (1976) 1-36

Chen P.P., "English Sentence Structures and Entity-Relationship Diagrams". Information
Sciences, (1983) 127-149

Cherfi S. Akoka J. and Comyn-Wattiau I., "Conceptual Modeling Quality- From EER to
UML Schémas Evaluation". ER2002, LNCS 2503, 2002, pp. 414-428

Easterbrook S. M. and Nuseibeh B. A. "Using Viewpoints for Inconsistency Detection".
Software Engineering Journal, Volume 11, No 1, Jan 1996

Flowers, Stephen (1996), "Software Failure: Management Failure", Chichester: John Wiley
and Sons.

www.manaraa.com

64

Finkelstein A. and Dowell J. "A Comedy Of Errors: The London Ambulance Service Case
Study". In Proc. Of the 8th International Workshop on software Specification & Design,
pages 2-4. IEEE CS Press, 1996.

Genero M., Jimenez L., Piattini M., "Defining and Validating Metrics for Assessing the
Maintainability of Entity-Relationship Diagrams". Working Paper 2003.

Genero M., Poels G. and Pianttini M., "Defining and Validating Measures for Conceptual
Data Model Quality". CAISE 2002. Toronto. Canada. LNCS 2348. (eds.) Springer-Verlag.
724-727.

Genero M., Jimenez L., Piattini M., "Measuring the Quality of Entity Relationship
Diagrams", in the proceedings of ER2000 conference, LNCS 1920, pp. 513-526.

Gervasi V., "Environment Support for Requirements Writing and Analysis".
PhD thesis, University of Pisa, March 2000

Gleick, J. (1996) "A bug and a crash," The New York Times Magazine, December 1,1996.

Gervasi V. and Nuseibeh B, "Lightweight Validation of Natural Language Requirements".
Software: Practice & Experience, Feb. 2002, 32(2): 113-133

Gries D. and Schneider B. "A Logical Approach To Discrete Math". Springer-Verlag
Publishers, 1993, Pages 59 and 204.

Hausmann J.H, Heckel R., Taentzer G. "Detection of Conflicting Functional Requirements in
a Use Case-Driven Approach". ICSE, May 19-25, 2002.

www.manaraa.com

65

Hooman J. and Vain. J. "An Integrated Technique for Developing Real-Time Systems".
1995. Proceedings., Seventh Euromicro Workshop on
14-16 June 1995 Page(s):236 - 243

Hunter A. and Nuseibeh B., "Managing Inconsistent Specifications: Reasoning, Analysis and
Action", Department of Computing Technical Report, DoC 95/15, Imperial College, London,
UK, October 1995.

IEEE Std 830-1998, "IEEE recommended practice for software requirements specifications",
20 Oct 1998

IEEE Std 1233-1998, "IEEE guide for developing system requirements specifications", 22
Dec 1998

Jones T.H. and Song I.Y, "Binary Equivalents of Ternary Relationships in Entity-
Relationship Modeling: a Logical Decomposition Approach" Journal of Database
Management, April-June, 2000, pp. 12-19

Kamsties, E., Berry, D M. and Paech, B., "Detecting Ambiguities in Requirements
Documents Using Inspections," Workshop on Inspections in Software Engineering
(WISE'01), pp. 68-80 Paris, France, Software Quality Research Lab

Klein D. and Manning C.D., "A* Parsing: Fast Exact Viterbi Parse Selection", Proceedings
ofHLT-NAACL'03, 2003

Lamsweerde A., Darimont R. and Letier E., "Managing Conflicts in Goal-Driven
Requirements Engineering". IEEE Transactions on Software Engineering, Special Issue on
Managing Inconsistency in Software Development, November 1998.

Lewerentz Claus and Lindner Thomas, (1995) "Production Cell,". A Comparative Study in
Formal Specification and Verification. KORSO Book 1995, pp. 388-416

www.manaraa.com

66

Mark R. Blackburn. Robert Busser. Aaron Nauman. Robert Knickerbocker. Richard Kasuda:
Mars Polar Lander Fault Identification Using Model-based Testing. ICECCS 2002: 163

Nelson, Clark, and Spurlock. "Curing the Software Requirements And Cost Estimating
Blues," PM: Nov-Dec, 1999.

NeufVille. "The Baggage System at Denver: Prospects and Lessons," Journal of Air
Transport Management, Vol. 1, No. 4, Dec., pp. 229-236,1994.

Nuseibeh B. A. and Easterbrook S. M., "Requirements Engineering: A Roadmap", In A. C.
W. Finkelstein (ed) "The Future of Software Engineering (Companion volume to the
proceedings of the 22nd International Conference on Software Engineering, ICSE' 2000).
IEEE Computer Society Press.

Nuseibeh B. A., Easterbrook S. M. and Russo A., "Making Inconsistency Respectable in
Software Development" Journal of Systems and Software, 56(11), November 2001, Elsevier
Science Publishers

Palmer J. D. and Fields A. N. "An Integrated Environment for Requirements Engineering".
IEEE Software 9, Number 3, May 1992, 80-85

Ristad, E., and Yianilos, P., (1998), "Learning String Edit Distance," IEEE Transactions on
Pattern Analysis and Machine Intelligence, Vol. 20(5), pp. 522-532.

Robinson, W.N., Volkov, S., Conflict-Oriented Requirements Restructuring, GSU CIS
Working Paper 99-5, Georgia State University, Atlanta, GA, April 9, 1999.

www.manaraa.com

67

Rodriguez, A., Egenhofer, M., (2003),"Determining Semantic Similarity among Entity
Classes from Different Ontologies", IEEE Transactions on Knowledge and Data
Engineering, Vol. 15 No. 2., pp. 442-456.

Sanni Gboyega "Detecting Inconsistencies in Functional Software Requirements". Institute
of Industrial Engineering Annual Conference, May 15th -19th 2005.

Spanoudakis G. and Finkelstein A. "Reconciling Requirements: A Method for Managing
Interference, Inconsistency and Conflict" Automated Software Engineering Volume 3: 1997,
433-457

Spanoudakis G., Finkelstein A. and Till D. "Overlaps in Requirements Engineering".
Automated Software Engineering 6(2): (1999) 171-198

Thalheim B., "Entity-Relationship Modeling, Foundations of Database Technology". 2000
Springer Publishers

Tjoa A.M., Berger L, "Transformation of Requirement Specification Expressed in Natural
Language into an EER Model. ER 1993. 206-217.

Tversky A., (1977), "Features Of Similarity," Psychological Reviews, Vol. 84 (4), pp. 327-
352.

Wilson M., Rosenberg H. and Hyatt E., "Automated Quality Analysis Of Natural Language
Requirements Specifications". Fourteenth Annual Pacific Northwest
Software Quality Conference, Portland, OR - October 1996

Zowghi D., Gervasi V. and McRae A. "Using default reasoning to discover inconsistencies
in natural language requirements."
In Proc. of the 8th Asia-Pacific Software Engineering Conference, pages 133-140, Dec.
2001.

www.manaraa.com

68

Web References

Cambridge Advanced Learner's Dictionary http://dictionary.oed.com. date accessed: 28th of
April 2004

Oxford Dictionary http://dictionarv.oed.com. date accessed: 28th of April 2004

Berry D.M. http://se.uwaterloo.ca/~dberrv/natural. language .html, date accessed: 25th of
March 2004

Chen P.P., http://bit.csc.lsu.edu/~chen/. date accessed: 25th of March 2004

Gervasi V. "CICO a fuzzy NL Parser" http://circe.di.unipi.it/Cico/, date accessed: 28th of
March 2004

"Stanford Lexicalized Parser" http://www-nlp.stanford.edu/. date accessed: 28th of March
2004

"Penn TreeBank Project" http://www.cis.upenn.edu/~treebank/home.html. date accessed:
31st of March 2004

DIA Description, http://www.csc.calpolv.edu/~dstearns/SchlohProiect/function.html. date
accessed: 25th of March 2004

"NASA needs better Software"
http://www.computerworld.eom/softwaretopics/software/storv/0.10801.78362.00.html. date
accessed: 27th of May 2004

"Unified Modeling Language" , http://www.uml.org/. date accessed: 20th of September 2005

http://dictionary.oed.com
http://dictionarv.oed.com
http://se.uwaterloo.ca/~dberrv/natural
http://bit.csc.lsu.edu/~chen/
http://circe.di.unipi.it/Cico/
http://www-nlp.stanford.edu/
http://www.cis.upenn.edu/~treebank/home.html
http://www.csc.calpolv.edu/~dstearns/SchlohProiect/function.html
http://www.computerworld.eom/softwaretopics/software/storv/0.10801.78362.00.html
http://www.uml.org/

www.manaraa.com

69

Appendix A: Penn Tree Bank Tagset
POS Tag Description Example
cc coordinating conjunction and
CD cardinal number 1, third
DT Determiner the
EX existential there there is
FW foreign word d'hoevre
IN preposition/ subordinating

conjunction
in, of, like

JJ Adjective green
JJR adjective, comparative greener
JJS adjective, superlative greenest
LS list marker 1)
MD Modal could, will
NN noun, singular or mass table
NNS noun plural tables
NNP proper noun, singular John
NNPS proper noun, plural Vikings
PDT Predeterminer both the boys
POS Possessive ending friend's
PRP personal pronoun I, he, it
PRP$ Possessive pronoun my, his
RB Adverb however, usually, naturally, here, good
RBR adverb, comparative better
RBS adverb, superlative best
RP Particle give up
TO To to go, to him
UH Inteqection uhhuhhuhh
VB verb, base form take
VBD verb, past tense took
VBG verb, gerund/present participle taking
VBN verb, past participle taken
VBP verb, sing, present, non-3d take
VBZ verb, 3rd person sing. Present takes
WDT wh-determiner which
WP wh-pronoun who, what
WP$ possessive wh-pronoun whose
WRB wh-abverb where, when

www.manaraa.com

70

Appendix B: Test Case Requirement

Sump Pump (SP):

Table B. 1 SP NL Functional Requirements

Requirements
ID

NL Functional Requirements Specifications

1 When the fluid level reaches the high threshold, then turn the pump on

2 When the fluid level reaches the low threshold, then turn the pump off

3 When the fluid level is between low and high then the pump is off

Table B.2 SP CL Functional Requirements

Requirements ID CL Functional Requirements Specifications
1 When the fluid level is high then the pump is on

2 When the fluid level is low then the pump is off

3 When the fluid level is between low and high then the pump is off

Table B.3 SP PSI Metric

n rj

3 2 0.8
1 2 0.6
3 1 0.6

www.manaraa.com

71

London Ambulance Service(LAS):

Table B.4 LAS NL Functional Requirements

Requirements ID NL Functional Requirements Specifications
IRC.l A medical emergency is either an illness or an accident

IRC.2 When an operator receives a phone call concerning a medical
emergency, the operator should dispatch the nearest available

ambulance
IRC.3 When an operator receives a phone call concerning a non-medical

emergency, the operator should not dispatch an ambulance and he
should transfer the phone call to another service.

OM.l When an operator receives a phone call, the operator should
dispatch the nearest available ambulance.

OM.2 When an operator receives a phone call, if an ambulance is not
the nearest available, then the operator should not dispatch that

ambulance.

Table B.5 LAS PSI Metric

r, fj

IRC.2 OM.l 0.89
OM.l OM.2 0.8
IRC.3 OM.l 0.77
IRC.3 OM.2 0.75
IRC.2 IRC.3 0.75
IRC.2 OM.2 0.72
IRC.l IRC.2 0.29
IRC.l IRC.3 0.25
IRC.l OM.l 0
IRC.l OM.2 0

www.manaraa.com

72

Production Cell:

Table B.6 PC NL Functional Requirements

Requirements
ID

NL Functional Requirement Specification

R001 The feed belts conveys the metal plate to the elevating rotary table

R002 The elevating rotary table is moved to a position adequate for unloading by
the first robot arm

R003 The first robot arm picks up the metal plate

R004 The robot rotates counterclockwise so that arm 1 points to the open press,
places the metal plate into it and then withdraws from the press

R005 The press forges the metal blank and opens again

R006 The robot retrieves the metal plate with its second arm, rotates further and
unloads the plate on the deposit belt

R007 The deposit belt transports the plate to the traveling crane

R008 The traveling crane picks up the metal plate, moves to the feed belt, and
unloads the metal plate on it

Table B.7 PC CL Functional Requirements

Requirements
ID

CL Functional Requirements Specifications

R001 The first track moves the metal to the top

R002 The top moves to a good position for removal by the first hand of the system

R003 The first hand of the system gets the metal

R004 The system turns so that the first hand points to the open machine

R005 The machine changes the metal and opens for the second hand

R006 The second hand of the system gets the metal and turns to put the metal on the
second track

R007 The second track moves the metal to the engine

R008 The engine gets the metal and puts the metal on the first track

www.manaraa.com

73

Table B.8 PC PSI Metric

n 0
1 2 0
1 3 0.23
1 4 0.18
1 5 0.19
1 6 0.35
1 7 0.60
1 8 0.38
2 3 0.4
2 4 0.14
2 5 0.16
2 6 0.14
2 7 0
2 8 0
3 4 0.2
3 5 0.43
3 6 0.8
3 7 0.23
3 8 0.64
4 5 0.32
4 6 0.14
4 7 0
4 8 0
5 6 0.47
5 7 0.38
5 8 0.33
6 7 0.35
6 8 0.79
7 8 0.38

www.manaraa.com

74

Denver International Airport (DIA):

Table B.9 DIA CL Functional Requirements

Requirements
ID

CL Requirement Specifications

R001 The system connects with the database

R002 The system gets the time of a flight from the airport

R003 The system gets the time of a flight to the airport

R004 The system measures the flow of a person through the airport

R005 The system connects a code with a flight

R006 The system connects a flight with a person

R007 The system sends a signal to the wire

R008 The wire transmits a signal to the device

R009 The wire transmits a signal to the small container

R010 The wire transmits a signal to the large container

R011 A person has a small bag

R012 A person has a large bag

R013 An agent puts a tag on a bag

ROM An agent puts a bag on the line

R015 A line holds a bag

R016 The system finds a container

R017 The system sends an empty container to a bag

www.manaraa.com

75

ROI 8 The container moves on the track

ROI 9 The container has a tag

R020 The equipment gets the bag from the line and puts the bag in the
container

R021 The device identifies the code on the tag

R022 The device sends the code to the system

R023 The computer finds the engine

R024 The engine pushes the container on the track

R025 The system sends a full container to a person

www.manaraa.com

76

Table B.IO DIA PSI Metric

n 0 Y (7tl,7t2)

1 2 0.3
1 3 0.3
1 4 0.25
1 5 0.27
1 6 0.25
1 7 0.3
1 8 0
1 9 0
1 10 0
1 11 0
1 12 0
1 13 0
1 14 0
1 15 0
1 16 0.33
1 17 0.3
1 18 0
1 19 0
1 20 0
1 21 0
1 22 0
1 23 0
1 24 0
1 25 0.3
2 3 0.5
2 4 0.21
2 5 0.23
2 6 0.21
2 7 0.25
2 8 0
2 9 0
2 10 0
2 11 0
2 12 0
2 13 0
2 14 0
2 15 0
2 16 0.3

www.manaraa.com

77

2 17 0.25
2 18 0
2 19 0
2 20 0.2
2 21 0
2 22 0
2 23 0
2 24 0
2 25 0.25
3 4 0.21
3 5 0.23
3 6 0.21
3 7 0.25
3 8 0
3 9 0
3 10 0
3 11 0
3 12 0
3 13 0
3 14 0
3 15 0
3 16 0.3
3 17 0.25
3 18 0
3 19 0
3 20 0.2
3 21 0
3 22 0
3 23 0
3 24 0
3 25 0.25
4 5 0.19
4 6 0.17
4 7 0.21
4 8 0
4 9 0
4 10 0
4 11 0
4 12 0
4 13 0
4 14 0
4 15 0
4 16 0.25
4 17 0.21
4 18 0
4 19 0

www.manaraa.com

78

4 20 0
4 21 0
4 22 0
4 23 0
4 24 0
4 25 0.21
5 6 0.75
5 7 0.23
5 8 0
5 9 0
5 10 0
5 11 0
5 12 0
5 13 0
5 14 0
5 15 0
5 16 0.27
5 17 0.23
5 18 0
5 19 0
5 20 0
5 21 0.23
5 22 0.23
5 23 0
5 24 0
5 25 0.23
6 7 0.21
6 8 0
6 9 0
6 10 0
6 11 0.21
6 12 0.21
6 13 0
6 14 0
6 15 0
6 16 0.25
6 17 0.21
6 18 0
6 19 0
6 20 0
6 21 0
6 22 0
6 23 0
6 24 0
6 25 0.21
7 8 0.25

www.manaraa.com

79

7 9 0.25
7 10 0.25
7 11 0
7 12 0
7 13 0
7 14 0
7 15 0
7 16 0.3
7 17 0.5
7 18 0
7 19 0
7 20 0
7 21 0
7 22 0.25
7 23 0
7 24 0
7 25 0.5
8 9 0.75
8 10 0.75
8 11 0
8 12 0
8 13 0
8 14 0
8 15 0
8 16 0
8 17 0
8 18 0
8 19 0
8 20 0
8 21 0
8 22 0
8 23 0
8 24 0
8 25 0
9 10 0.75
9 11 0
9 12 0
9 13 0
9 14 0
9 15 0
9 16 0
9 17 0
9 18 0
9 19 0
9 . 20 0
9 21 0

www.manaraa.com

80

9 22 0
9 23 0
9 24 0
9 25 0
10 11 0
10 12 0
10 13 0
10 14 0
10 15 0
10 16 0
10 17 0
10 18 0
10 19 0
10 20 0
10 21 0
10 22 0
10 23 0
10 24 0
10 25 0
11 12 0.75
11 13 0
11 14 0.25
11 15 0.3
11 16 0
11 17 0
11 18 0
11 19 0.3
11 20 0.4
11 21 0
11 22 0
11 23 0
11 24 0
11 25 0
12 13 0
12 14 0.25
12 15 0.3
12 16 0
12 17 0
12 18 0
12 19 0.3
12 20 0.4
12 21 0
12 22 0
12 23 0
12 24 0
12 25 0

www.manaraa.com

81

13 14 0.5
13 15 0
13 16 0
13 17 0
13 18 0
13 19 0.3
13 20 0.2
13 21 0
13 22 0
13 23 0
13 24 0
13 25 0
14 15 0.3
14 16 0
14 17 0
14 18 0
14 19 0
14 20 0.6
14 21 0
14 22 0
14 23 0
14 24 0
14 25 0
15 16 0
15 17 0
15 18 0
15 19 0
15 20 0.46
15 21 0
15 22 0
15 23 0
15 24 0
15 25 0
16 17 0.6
16 18 0.33
16 19 0.33
16 20 0
16 21 0
16 22 0
16 23 0.33
16 24 0.3
16 25 0.6
17 18 0.3
17 19 0.3
17 20 0
17 21 0

www.manaraa.com

82

17 22 0.25
17 23 0
17 24 0.25
17 25 0.75
18 19 0.33
18 20 0
18 21 0
18 22 0
18 23 0
18 24 0.6
18 25 0.3
19 20 0
19 21 0
19 22 0
19 23 0
19 24 0.3
19 25 0.3
20 21 0
20 22 0
20 23 0
20 24 0
20 25 0
21 22 0.5
21 23 0
21 24 0
21 25 0
22 23 0
22 24 0
22 25 0.25
23 24 0.3
23 25 0
24 25 0.25

	2006
	A new metric for detecting conflict in functional software requirements
	Adegboyega Oladayo Sanni
	Recommended Citation

	tmp.1410275899.pdf.LdikG

